Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37815108

RESUMEN

Machine-learned interatomic potentials are fast becoming an indispensable tool in computational materials science. One approach is the ephemeral data-derived potential (EDDP), which was designed to accelerate atomistic structure prediction. The EDDP is simple and cost-efficient. It relies on training data generated in small unit cells and is fit using a lightweight neural network, leading to smooth interactions which exhibit the robust transferability essential for structure prediction. Here, we present a variety of applications of EDDPs, enabled by recent developments of the open-source EDDP software. New features include interfaces to phonon and molecular dynamics codes, as well as deployment of the ensemble deviation for estimating the confidence in EDDP predictions. Through case studies ranging from elemental carbon and lead to the binary scandium hydride and the ternary zinc cyanide, we demonstrate that EDDPs can be trained to cover wide ranges of pressures and stoichiometries, and used to evaluate phonons, phase diagrams, superionicity, and thermal expansion. These developments complement continued success in accelerated structure prediction.

2.
Nat Commun ; 14(1): 1674, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966129

RESUMEN

The discovery of 250-kelvin superconducting lanthanum polyhydride under high pressure marked a significant advance toward the realization of a room-temperature superconductor. X-ray diffraction (XRD) studies reveal a nonstoichiometric LaH9.6 or LaH10±Î´ polyhydride responsible for the superconductivity, which in the literature is commonly treated as LaH10 without accounting for stoichiometric defects. Here, we discover significant nuclear quantum effects (NQE) in this polyhydride, and demonstrate that a minor amount of stoichiometric defects will cause quantum proton diffusion in the otherwise rigid lanthanum lattice in the ground state. The diffusion coefficient reaches ~10-7 cm2/s in LaH9.63 at 150 gigapascals and 240 kelvin, approaching the upper bound value of interstitial hydrides at comparable temperatures. A puzzling phenomenon observed in previous experiments, the positive pressure dependence of the superconducting critical temperature Tc below 150 gigapascals, is explained by a modulation of the electronic structure due to a premature distortion of the hydrogen lattice in this quantum fluxional structure upon decompression, and resulting changes of the electron-phonon coupling. This finding suggests the coexistence of the quantum proton fluxion and hydrogen-induced superconductivity in this lanthanum polyhydride, and leads to an understanding of the structural nature and superconductivity of nonstoichiomectric hydrogen-rich materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA