RESUMEN
COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.
Asunto(s)
COVID-19/inmunología , COVID-19/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/patología , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Muerte Celular , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inmunología , Inflamación/patología , Linfohistiocitosis Hemofagocítica/inducido químicamente , Masculino , Ratones , Ratones Transgénicos , Células THP-1RESUMEN
Inflammasome activation is critical for host defenses against various microbial infections. Activation of the NLRC4 inflammasome requires detection of flagellin or type III secretion system (T3SS) components by NLR family apoptosis inhibitory proteins (NAIPs); yet how this pathway is regulated is unknown. Here, we found that interferon regulatory factor 8 (IRF8) is required for optimal activation of the NLRC4 inflammasome in bone-marrow-derived macrophages infected with Salmonella Typhimurium, Burkholderia thailandensis, or Pseudomonas aeruginosa but is dispensable for activation of the canonical and non-canonical NLRP3, AIM2, and Pyrin inflammasomes. IRF8 governs the transcription of Naips to allow detection of flagellin or T3SS proteins to mediate NLRC4 inflammasome activation. Furthermore, we found that IRF8 confers protection against bacterial infection in vivo, owing to its role in inflammasome-dependent cytokine production and pyroptosis. Altogether, our findings suggest that IRF8 is a critical regulator of NAIPs and NLRC4 inflammasome activation for defense against bacterial infection.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Factores Reguladores del Interferón/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Células Cultivadas , Citocinas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Flagelina/metabolismo , Factores Reguladores del Interferón/antagonistas & inhibidores , Factores Reguladores del Interferón/genética , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas aeruginosa/patogenicidad , Piroptosis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Salmonella typhimurium/patogenicidad , Transcripción GenéticaRESUMEN
Inflammasomes are important sentinels of innate immune defence that are activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defence against aspergillosis2,3, which is a major health concern for patients who are immunocompromised. However, the Aspergillus fumigatus PAMPs that are responsible for inflammasome activation are not known. Here we show that the polysaccharide galactosaminogalactan (GAG) of A. fumigatus is a PAMP that activates the NLRP3 inflammasome. The binding of GAG to ribosomal proteins inhibited cellular translation machinery, and thus activated the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, which triggered activation of the NLRP3 inflammasome. In mice, a GAG-deficient Aspergillus mutant (Δgt4c) did not elicit protective activation of the inflammasome, and this strain exhibited enhanced virulence. Moreover, administration of GAG protected mice from colitis induced by dextran sulfate sodium in an inflammasome-dependent manner. Thus, ribosomes connect the sensing of this fungal PAMP to the activation of an innate immune response.
Asunto(s)
Aspergilosis/prevención & control , Aspergillus fumigatus/metabolismo , Inflamasomas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Polisacáridos/metabolismo , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergillus fumigatus/inmunología , Biopelículas , Colitis/inducido químicamente , Colitis/prevención & control , Sulfato de Dextran , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Inmunidad Innata , Inflamasomas/inmunología , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polisacáridos/inmunología , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismoRESUMEN
The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1ß and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.
Asunto(s)
Muerte Celular/genética , ARN Helicasas DEAD-box/metabolismo , Inflamasomas/genética , Macrófagos/citología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Fisiológico/genética , Animales , Línea Celular , Supervivencia Celular/genética , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamasomas/inmunología , Macrófagos/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genéticaRESUMEN
BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.
Asunto(s)
Conducta de Enfermedad , Malaria Cerebral , Ratones , Animales , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Inhibidores del Factor de Necrosis Tumoral , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Transducción de SeñalRESUMEN
Cellular stress can induce cytoplasmic ribonucleoprotein complexes called stress granules that allow the cells to survive. Stress granules are also central to cellular responses to infections, in which they can act as platforms for viral sensing or modulate innate immune signaling through pattern recognition receptors. However, the effect of innate immune signaling on stress granules is poorly understood. In this study, we report that prior induction of innate immune signaling through TLRs inhibited stress granule assembly in a TLR ligand dose-dependent manner in murine bone marrow-derived macrophages. Time course analysis suggests that TLR stimulation can reverse stress granule assembly even after it has begun. Additionally, both MYD88- and TRIF-mediated TLR signaling inhibited stress granule assembly in response to endoplasmic reticulum stress in bone marrow-derived macrophages and the chemotherapeutic drug oxaliplatin in murine B16 melanoma cells. This inhibition was not due to a decrease in expression of the critical stress granule proteins G3BP1 and DDX3X and was independent of IRAK1/4, JNK, ERK and P38 kinase activity but dependent on IKK complex kinase activity. Overall, we have identified the TLR-IKK complex signaling axis as a regulator of stress granule assembly-disassembly dynamics, highlighting cross-talk between processes that are critical in health and disease.
Asunto(s)
Quinasa I-kappa B/inmunología , Inmunidad Innata/inmunología , Gránulos de Estrés/inmunología , Receptores Toll-Like/inmunología , Animales , Células Cultivadas , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Transducción de Señal/inmunologíaRESUMEN
Viruses and hosts have coevolved for millions of years, leading to the development of complex host-pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule-mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Inmunidad Innata , Inflamasomas/metabolismo , Virus de la Influenza A/fisiología , Interferón Tipo I/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Virus de la Influenza A/inmunología , RatonesRESUMEN
Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.
Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia/inmunología , Proteínas de Unión al GTP/inmunología , Células Gigantes/inmunología , Macrófagos/inmunología , Enfermedades Nasales/inmunología , Prenilación de Proteína/inmunología , Animales , Infecciones por Burkholderia/genética , Infecciones por Burkholderia/patología , Fusión Celular , Proteínas de Unión al GTP/genética , Células Gigantes/microbiología , Células Gigantes/patología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Enfermedades Nasales/genética , Enfermedades Nasales/microbiología , Enfermedades Nasales/patologíaRESUMEN
Valency can be defined as the number of discrete interactions a biomolecule can engage in. Valency can be critical for function, such as determining whether a molecule acts as a scaffold for assembling large supramolecular complexes or forms a functional dimer. Here, we highlight the importance of the role of valency in regulating immune responses, with a focus on innate immunity. We discuss some of the ways in which valency itself is regulated through transcriptional, post-transcriptional, and post-translational modifications. Finally, we propose that the valency model can be applied at the whole cell level to study differences in individual cell responses with relevance to putative therapeutic applications.
Asunto(s)
Sistema Inmunológico , Inmunidad Innata/genética , Modelos Inmunológicos , Animales , Variación Biológica Individual , Regulación de la Expresión Génica , Humanos , Inmunomodulación , Mediadores de Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARNRESUMEN
The role of the ribosome in the regulation of gene expression has come into increased focus. It is proposed that ribosomes are catalytic engines capable of changing their protein composition in response to environmental stimuli. Time-resolved cryo-electron microscopy (cryo-EM) techniques are employed to identify quantitative changes in the protein composition and structure of the Saccharomyces cerevisiae 80S ribosomes after shifting the carbon source from glucose to glycerol. Using cryo-EM combined with the computational classification approach, it is found that a fraction of the yeast cells' 80S ribosomes lack ribosomal proteins at the entrance and exit sites for tRNAs, including uL16(RPL10), eS1(RPS1), uS11(RPS14A/B), and eS26(RPS26A/B). This fraction increased after a change from glucose to glycerol medium. The quantitative structural analysis supports the hypothesis that ribosomes are dynamic complexes that alter their composition in response to changes in growth or environmental conditions.
Asunto(s)
Saccharomyces cerevisiae , Carbono , Microscopía por Crioelectrón , Proteínas Ribosómicas , Ribosomas , Proteínas de Saccharomyces cerevisiaeRESUMEN
To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.
Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía Liquida , Mapeo de Interacción de Proteínas , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Espectrometría de Masas en TándemRESUMEN
Mice homozygous for the Y208N amino acid substitution in the carboxy terminus of SHP-1 (referred to as Ptpn6spin mice) spontaneously develop a severe inflammatory disease resembling neutrophilic dermatosis in humans. Disease in Ptpn6spin mice is characterized by persistent footpad swelling and suppurative inflammation. Recently, in addition to IL-1α and IL-1R signaling, we demonstrated a pivotal role for RIPK1, TAK1, and ASK1 in promoting inflammatory disease in Ptpn6spin mice. In the current study we have identified a previously unknown role for CARD9 signaling as a critical regulator for Ptpn6spin-mediated footpad inflammation. Genetic deletion of CARD9 significantly rescued the Ptpn6spin-mediated footpad inflammation. Mechanistically, enhanced IL-1α-mediated signaling in Ptpn6spin mice neutrophils was dampened in Ptpn6spinCard9-/- mice. Collectively, this study identifies SHP-1 and CARD9 cross-talk as a novel regulator of IL-1α-driven inflammation and opens future avenues for finding novel drug targets to treat neutrophilic dermatosis in humans.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Dermatitis/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Sustitución de Aminoácidos , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Dermatitis/genética , Dermatitis/patología , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Ratones , Ratones Noqueados , Mutación Missense , Neutrófilos/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/genéticaRESUMEN
Activation of the multimeric inflammasome complex leads to inflammatory responses to biotic and abiotic triggers. The inflammasome sensor, Nod-like receptor family pyrin domain containing 3 (NLRP3), is activated by a range of stimuli and is tightly regulated to restrict excessive inflammation. Because NLRP3 responds broadly to cellular insults and regulates cell death similar to the stress-activated apoptosis signal-regulating kinases 1 and 2 (ASK1/2), we hypothesized that ASK1/2 may regulate NLRP3 activity. Although essential for mediating NLRP3 inflammasome activation, ASK1/2 were not required for NLRC4 or absent in melanoma 2 inflammasome activation. ASK1/2 was required for NLRP3 up-regulation after lipopolysaccharide treatment in primary bone marrow-derived macrophages and lung fibroblasts as well as during infection with Burkholderia thailandensis and influenza virus. Consistent with reduced NLRP3 expression in response to B. thailandensis, caspase-1 cleavage and cell death were reduced in infected bone marrow-derived macrophages, and mice lacking ASK1/2 were resistant to Burkholderia intranasal infection. Single knockouts of either ASK1 or ASK2 showed a partial role for both ASK1 and ASK2 in NLRP3 up-regulation in response to lipopolysaccharide or B. thailandensis, but ASK2 was required primarily to mediate lethal pathology during intranasal infection in vivo. Our findings identify the ASK1/2 complex as a regulator of NLRP3 activation and highlight a larger role for ASK2 in lung infection during B. thailandensis infection.
Asunto(s)
Inflamasomas/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Apoptosis , Burkholderia/fisiología , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Regulación hacia ArribaRESUMEN
The regulatory role of the ribosome in gene expression has come into sharper focus. It has been proposed that ribosomes are dynamic complexes capable of changing their protein composition in response to environmental stimuli. MS is applied to identify quantitative changes in the protein composition of S. cerevisiae 80S ribosomes in response to different environmental stimuli. Using quantitative MS, it is found that the paralog yeast ribosomal proteins RPL8A (eL8A) and RPL8B (eL8B) change their relative proportions in the 80S ribosome when yeast is switched from growth in glucose to glycerol. By using yeast genetics and polysome profiling, it is shown that yeast ribosomes containing either RPL8A or RPL8B are not functionally interchangeable. The quantitative proteomic data support the hypothesis that ribosomes are dynamic complexes that alter their composition and functional activity in response to changes in growth or environmental conditions.
Asunto(s)
Polirribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Crioprotectores/farmacología , Glucosa/farmacología , Glicerol/farmacología , Espectrometría de Masas , Proteínas Ribosómicas/química , Ribosomas/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Edulcorantes/farmacologíaRESUMEN
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Unión Proteica , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , TemperaturaRESUMEN
Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches.
Asunto(s)
Presentación de Antígeno , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Proteoma/metabolismo , Adyuvantes Inmunológicos , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Cultivadas , Humanos , Gripe Humana/inmunología , Gripe Humana/prevención & control , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Mapas de Interacción de Proteínas , Proteómica , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
It is generally assumed that the MHC class I antigen (Ag)-processing (CAP) machinery - which supplies peptides for presentation by class I molecules - plays no role in class II-restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4(+) T-cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II-associated self peptides suggesting that the CAP machinery impacts class II-restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4(+) T-cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4(+) T-cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II-restricted peptidome, impacting the CD4(+) T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II-restricted epitopes that would otherwise be capable of eliciting functional Th-cell responses.
Asunto(s)
Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Secuencia de Aminoácidos , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/metabolismo , Antígenos Ly/genética , Antígenos Ly/inmunología , Epítopos/química , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Leucil Aminopeptidasa/deficiencia , Leucil Aminopeptidasa/genética , Leucil Aminopeptidasa/inmunología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Proteómica , Análisis de Secuencia de Proteína , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Espectrometría de Masas en TándemRESUMEN
Dr. Parimal Samir works in the field of host-pathogen interactions. In this mSphere of Influence article, he reflects on how the manuscript entitled "De novo gene synthesis by an antiviral reverse transcriptase" by Samuel Sternberg and colleagues made an impact by reminding him that there is still so much to discover in life sciences.
RESUMEN
Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. In the brain, no detectable viral RNA and minimal residential immune cell activation was observed in the surviving mice post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and gene expression levels associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent systemic T helper 1 prone cellular immune responses and strong sera neutralizing antibodies against Delta and Omicron variants months post-acute infection. Overall, our findings suggest that infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long-COVID patients and provides new insights into the role of systemic and brain residential immune factors in PASC pathogenesis.