Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Brain ; 144(12): 3710-3726, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34972208

RESUMEN

Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ciclofilina A/genética , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ciclofilina A/deficiencia , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/patología , Humanos , Ratones , Ratones Noqueados
2.
Cell Mol Life Sci ; 79(1): 7, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936028

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Axones/patología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desnervación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Miembro Posterior/patología , Humanos , Inflamación/patología , Inyecciones Intramusculares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inervación , Atrofia Muscular/patología , Fenotipo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células de Schwann/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
3.
Br J Anaesth ; 126(1): 256-264, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32977957

RESUMEN

BACKGROUND: Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS: Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS: iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS: iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.


Asunto(s)
Argón/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Argón/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Inflamación/etiología , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Tiempo
4.
Brain ; 141(9): 2685-2699, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30084913

RESUMEN

Traumatic brain injury is a risk factor for subsequent neurodegenerative disease, including chronic traumatic encephalopathy, a tauopathy mostly associated with repetitive concussion and blast, but not well recognized as a consequence of severe traumatic brain injury. Here we show that a single severe brain trauma is associated with the emergence of widespread hyperphosphorylated tau pathology in a proportion of humans surviving late after injury. In parallel experimental studies, in a model of severe traumatic brain injury in wild-type mice, we found progressive and widespread tau pathology, replicating the findings in humans. Brain homogenates from these mice, when inoculated into the hippocampus and overlying cerebral cortex of naïve mice, induced widespread tau pathology, synaptic loss, and persistent memory deficits. These data provide evidence that experimental brain trauma induces a self-propagating tau pathology, which can be transmitted between mice, and call for future studies aimed at investigating the potential transmissibility of trauma associated tau pathology in humans.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Tauopatías/etiología , Tauopatías/fisiopatología , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Conmoción Encefálica/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedades Neurodegenerativas/patología , Fosforilación , Proteínas tau/metabolismo , Proteínas tau/fisiología
5.
J Cell Mol Med ; 20(6): 1036-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26987908

RESUMEN

In the cell therapy scenario, efficient tracing of transplanted cells is essential for investigating cell migration and interactions with host tissues. This is fundamental to provide mechanistic insights which altogether allow for the understanding of the translational potential of placental cell therapy in the clinical setting. Mesenchymal stem/stromal cells (MSC) from human placenta are increasingly being investigated for their potential in treating patients with a variety of diseases. In this study, we investigated the feasibility of using poly (methyl methacrylate) nanoparticles (PMMA-NPs) to trace placental MSC, namely those from the amniotic membrane (hAMSC) and early chorionic villi (hCV-MSC). We report that PMMP-NPs are efficiently internalized and retained in both populations, and do not alter cell morphofunctional parameters. We observed that PMMP-NP incorporation does not alter in vitro immune modulatory capability of placental MSC, a characteristic central to their reparative/therapeutic effects in vitro. We also show that in vitro, PMMP-NP uptake is not affected by hypoxia. Interestingly, after in vivo brain ischaemia and reperfusion injury achieved by transient middle cerebral artery occlusion (tMCAo) in mice, iv hAMSC treatment resulted in significant improvement in cognitive function compared to PBS-treated tMCAo mice. Our study provides evidence that tracing placental MSC with PMMP-NPs does not alter their in vitro and in vivo functions. These observations are grounds for the use of PMMP-NPs as tools to investigate the therapeutic mechanisms of hAMSC and hCV-MSC in preclinical models of inflammatory-driven diseases.


Asunto(s)
Endocitosis , Nanopartículas/química , Placenta/citología , Polímeros/metabolismo , Amnios/citología , Animales , Diferenciación Celular , Hipoxia de la Célula , Proliferación Celular , Supervivencia Celular , Vellosidades Coriónicas/metabolismo , Femenino , Humanos , Inmunomodulación , Isquemia/patología , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Embarazo
6.
Crit Care Med ; 44(11): e1118-e1131, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27441900

RESUMEN

OBJECTIVES: To define the features of human amniotic mesenchymal stromal cell secretome and its protective properties in experimental models of acute brain injury. DESIGN: Prospective experimental study. SETTING: Laboratory research. SUBJECTS: C57Bl/6 mice. INTERVENTIONS: Mice subjected to sham or traumatic brain injury by controlled cortical impact received human amniotic mesenchymal stromal cells or phosphate-buffered saline infused intracerebroventricularly or intravenously 24 hours after injury. Organotypic cortical brain slices exposed to ischemic injury by oxygen-glucose deprivation were treated with human amniotic mesenchymal stromal cells or with their secretome (conditioned medium) in a transwell system. MEASUREMENTS AND MAIN RESULTS: Traumatic brain injured mice receiving human amniotic mesenchymal stromal cells intravenously or intracerebroventricularly showed early and lasting functional and anatomical brain protection. cortical slices injured by oxigen-glucose deprivation and treated with human amniotic mesenchymal stromal cells or conditioned medium showed comparable protective effects (neuronal rescue, promotion of M2 microglia polarization, induction of trophic factors) indicating that the exposure of human amniotic mesenchymal stromal cells to the injured tissue is not necessary for the release of bioactive factors. Using sequential size-exclusion and gel-filtration chromatography, we identified a conditioned medium subfraction, which specifically displays these highly protective properties and we found that this fraction was rich in bioactive molecules with molecular weight smaller than 700 Da. Quantitative RNA analysis and mass spectrometry-based peptidomics showed that the active factors are not proteins or RNAs. The metabolomic profiling of six metabolic classes identified a list of molecules whose abundance was selectively elevated in the active conditioned medium fraction. CONCLUSIONS: Human amniotic mesenchymal stromal cell-secreted factors protect the brain after acute injury. Importantly, a fraction rich in metabolites, and containing neither proteic nor ribonucleic molecules was protective. This study indicates the profiling of protective factors that could be useful in cell-free therapeutic approaches for acute brain injury.


Asunto(s)
Amnios/citología , Lesiones Encefálicas/prevención & control , Células Madre Mesenquimatosas/fisiología , Animales , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Estudios Prospectivos , ARN Mensajero/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Brain Commun ; 4(2): fcac036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350551

RESUMEN

Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.

8.
Cell Transplant ; 27(1): 151-167, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29562781

RESUMEN

Acute brain injury resulting from ischemic/hemorrhagic or traumatic damage is one of the leading causes of mortality and disability worldwide and is a significant burden to society. Neuroprotective options to counteract brain damage are very limited in stroke and traumatic brain injury (TBI). Given the multifaceted nature of acute brain injury and damage progression, several therapeutic targets may need to be addressed simultaneously to interfere with the evolution of the injury and improve the patient's outcome. Stem cells are ideal candidates since they act on various mechanisms of protection and repair, improving structural and functional outcomes after experimental stroke or TBI. Stem cells isolated from placenta offer advantages due to their early embryonic origin, ease of procurement, and ethical acceptance. We analyzed the evidence for the beneficial effects of placenta-derived stem cells in acute brain injury, with the focus on experimental studies of TBI and stroke, the engineering strategies pursued to foster cell potential, and characterization of the bioactive molecules secreted by placental cells, known as their secretome, as an alternative cell-free strategy. Results from the clinical application of placenta-derived stem cells for acute brain injury and ongoing clinical trials are summarily discussed.


Asunto(s)
Lesiones Encefálicas/terapia , Placenta/citología , Medicina Regenerativa/métodos , Células Madre/citología , Cordón Umbilical/citología , Femenino , Humanos , Embarazo , Accidente Cerebrovascular/terapia
9.
Exp Neurol ; 300: 167-178, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29126888

RESUMEN

There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Progresión de la Enfermedad , Índice de Severidad de la Enfermedad , Sustancia Blanca/patología , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/tendencias , Imagen por Resonancia Magnética/tendencias , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Sustancia Blanca/diagnóstico por imagen
10.
Sci Rep ; 7(1): 6962, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761170

RESUMEN

Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes functional recovery after stroke in animal models, but the mechanisms underlying these effects remain incompletely understood. We tested the efficacy of Good Manufacturing Practices (GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are efficacious and if this efficacy is associated with cortical circuit reorganization using neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, indicating an enhanced plastic potential of the perilesional cortex. These results show that hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, the downregulation of "plasticity brakes" such as PNN suggests that hBM-MSC treatment stimulates plasticity and formation of new connections in the perilesional cortex.


Asunto(s)
Isquemia Encefálica/terapia , Neuronas GABAérgicas/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/terapia , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Infusiones Intravenosas , Ratones , Plasticidad Neuronal , Recuperación de la Función , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Resultado del Tratamiento
11.
J Neurotrauma ; 33(11): 1060-72, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26180940

RESUMEN

An impaired ability to regulate microglia activation by fractalkine (CX3CL1) leads to microglia chronic sub-activation. How this condition affects outcome after acute brain injury is still debated, with studies showing contrasting results depending on the timing and the brain pathology. Here, we investigated the early and delayed consequences of fractalkine receptor (CX3CR1) deletion on neurological outcome and on the phenotypical features of the myeloid cells present in the lesions of mice with traumatic brain injury (TBI). Wild type (WT) and CX3CR1(-/-) C57Bl/6 mice were subjected to sham or controlled cortical impact brain injury. Outcome was assessed at 4 days and 5 weeks after TBI by neuroscore, neuronal count, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Compared with WT mice, CX3CR1(-/-) TBI mice showed a significant reduction of sensorimotor deficits and lower cellular damage in the injured cortex 4 days post-TBI. Conversely, at 5 weeks, they showed a worsening of sensorimotor deficits and pericontusional cell death. Microglia (M) and macrophage (µ) activation and polarization were assessed by quantitative immunohistochemistry for CD11b, CD68, Ym1, and inducible nitric oxide synthase (iNOS)-markers of M/µ activation, phagocytosis, M2, and M1 phenotypes, respectively. Morphological analysis revealed a decreased area and perimeter of CD11b(+) cells in CX3CR1(-/-) mice at 4 days post-TBI, whereas, at 5 weeks, both parameters were significantly higher, compared with WT mice. At 4 days, CX3CR1(-/-) mice showed significantly decreased CD68 and iNOS immunoreactivity, while at 5 weeks post-injury, they showed a selective increase of iNOS. Gene expression on CD11b(+) sorted cells revealed an increase of interleukin 10 and insulin-like growth factor 1 (IGF1) at 1 day and a decrease of IGF1 4 days and 5 weeks post-TBI in CX3CR1(-/-), compared with WT mice. These data show an early protection followed by a chronic exacerbation of TBI outcome in the absence of CX3CR1. Thus, longitudinal effects of myeloid cell manipulation at different stages of pathology should be investigated to understand how and when their modulation may offer therapeutic chances.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Receptor 1 de Quimiocinas CX3C/fisiología , Progresión de la Enfermedad , Activación de Macrófagos , Microglía/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/deficiencia , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Protectores , Factores de Tiempo
12.
J Control Release ; 174: 15-26, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24225226

RESUMEN

The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Microglía/metabolismo , Nanopartículas/administración & dosificación , Polimetil Metacrilato/administración & dosificación , Traumatismos de la Médula Espinal/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Carbocianinas/administración & dosificación , Carbocianinas/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colorantes/administración & dosificación , Colorantes/química , Portadores de Fármacos/química , Femenino , Hidrogeles , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Nanopartículas/química , Polimetil Metacrilato/química , Médula Espinal/metabolismo
13.
ACS Nano ; 7(11): 9881-95, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24138479

RESUMEN

Much evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI. In this study, we tested and evaluated in vitro and in vivo a new drug delivery nanocarrier: minocycline loaded in NPs composed by a polymer based on poly-ε-caprolactone and polyethylene glycol. These NPs are able to selectively target and modulate, specifically, the activated proinflammatory microglia/macrophages in subacute progression of the secondary injury in SCI mouse model. After minocycline-NPs treatment, we demonstrate a reduced activation and proliferation of microglia/macrophages around the lesion site and a reduction of cells with round shape phagocytic-like phenotype in favor of a more arborized resting-like phenotype with low CD68 staining. Treatment here proposed limits, up to 15 days tested, the proinflammatory stimulus associated with microglia/macrophage activation. This was demonstrated by reduced expression of proinflammatory cytokine IL-6 and persistent reduced expression of CD68 in traumatized site. The nanocarrier drug delivery tool developed here shows potential advantages over the conventionally administered anti-inflammatory therapy, maximizing therapeutic efficiency and reducing side effects.


Asunto(s)
Macrófagos/patología , Microglía/patología , Minociclina/administración & dosificación , Nanomedicina/métodos , Traumatismos de la Médula Espinal/terapia , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Materiales Biocompatibles/química , Supervivencia Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Ensayo de Inmunoadsorción Enzimática , Hidrogeles/química , Inflamación , Interleucina-6/sangre , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Polímeros/química , Puntos Cuánticos , Rodaminas/química , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA