Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 127(Pt 6): 1151-60, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24634506

RESUMEN

In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Transducción de Señal , Animales , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/biosíntesis , Humanos , Análisis de la Célula Individual
2.
Nat Chem Biol ; 8(4): 375-82, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22366721

RESUMEN

Understanding how specific cyclic AMP (cAMP) signals are organized and relayed to their effectors in different compartments of the cell to achieve functional specificity requires molecular tools that allow precise manipulation of cAMP in these compartments. Here we characterize a new method using bicarbonate-activatable and genetically targetable soluble adenylyl cyclase to control the location, kinetics and magnitude of the cAMP signal. Using this live-cell cAMP manipulation in conjunction with fluorescence imaging and mechanistic modeling, we uncovered the activation of a resident pool of protein kinase A (PKA) holoenzyme in the nuclei of HEK-293 cells, modifying the existing dogma of cAMP-PKA signaling in the nucleus. Furthermore, we show that phosphodiesterases and A-kinase anchoring proteins (AKAPs) are critical in shaping nuclear PKA responses. Collectively, our data suggest a new model in which AKAP-localized phosphodiesterases tune an activation threshold for nuclear PKA holoenzyme, thereby converting spatially distinct second messenger signals to temporally controlled nuclear kinase activity.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Citoplasma/metabolismo , Inhibidores Enzimáticos/farmacología , Células HEK293/efectos de los fármacos , Holoenzimas/metabolismo , Humanos , Modelos Biológicos , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Bicarbonato de Sodio/farmacología , Solubilidad
3.
Adv Exp Med Biol ; 758: 287-94, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23080174

RESUMEN

UNLABELLED: The cAMP-protein kinase A (PKA) signaling pathway is involved in regulating the release of transmitters from neurons and other cells. Multiple phosphodiesterase (PDE) isoforms regulate this pathway, however, the pattern of isoform expression and stimulus response across tissues has not been fully characterized.Using fluorescent resonance energy transfer (FRET)-based imaging in primary superior cervical ganglia (SCG) neurons and real-time qPCR, we explored the role of PDE3 and PDE4 isoforms and oxygen tension in the activation of PKA and changes in gene expression. These primary neurons were infected with an adenovirus containing A-Kinase activity reporter (AKAR3) and assayed for responses to PDE inhibitors: rolipram (ROL, 1 µM), milrinone (MIL, 10 µM) and IBMX (100 µM), and adenylyl cyclase activator forskolin (FSK, 50 µM). Different PDE activity patterns were observed in different cells: high PDE4 activity (n = 3), high PDE3 activity (n = 3) and presence of activity of other PDEs (n = 3). Addition of PKA inhibitor H89 (10 µM) completely reversed the response. We further studied the effect of oxygen in the PKA activity induced by PDE inhibition. Both normoxia (20%O(2)/5%CO(2)) and hypoxia (0%O(2)/5%CO(2)) induced a similar increase in the FRET emission ratio (14.5 ± 0.8 and 14.7 ± 0.8, respectively).PDE3a, PDE4b and PDE4d isoforms mRNAs were highly expressed in the whole SCG with no modulation by hypoxia. CONCLUSION: Using a FRET-based PKA activity sensor, we show that primary SCG neurons can be used as a model system to dissect the contribution of different PDE isoforms in regulating cAMP/PKA signaling. The differential patterns of PDE regulation potentially represent subpopulations of ganglion cells with different physiological functions.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Oxígeno/fisiología , Ganglio Cervical Superior/enzimología , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Femenino , Transferencia Resonante de Energía de Fluorescencia , Isoenzimas/genética , Isoenzimas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
4.
Chem Soc Rev ; 38(10): 2852-64, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19771332

RESUMEN

The current complement of fluorescent proteins (FPs) contains color variants whose emission spectra span most of the visible spectrum, providing researchers with a versatile toolset of fluorescent probes for live cell imaging applications. FP family members generate their chromophores autocatalytically through a series of posttranslational modifications. The fluorescence characteristics of GFP-family members are influenced in important ways by the local microenvironment surrounding the chromophore. In this tutorial review, we first examine the molecular factors that influence the photophysical properties of FP family members and then briefly discuss some of the ways in which these fascinating proteins have been applied to the field of live cell imaging.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas/métodos , Color , Simulación por Computador , Diagnóstico por Imagen/métodos , Evolución Molecular Dirigida/métodos , Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/fisiología , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Teoría Cuántica , Espectrometría de Fluorescencia/métodos , Termodinámica
5.
Biochemistry ; 47(39): 10407-19, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18771288

RESUMEN

Serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AANAT)] is a key circadian rhythm enzyme that drives the nocturnal production of melatonin in the pineal. Prior studies have suggested that its light and diurnal regulation involves phosphorylation on key AANAT Ser and Thr residues which results in 14-3-3zeta recruitment and changes in catalytic activity and protein stability. Here we use protein semisynthesis by expressed protein ligation to systematically explore the effects of single and dual phosphorylation of AANAT on acetyltransferase activity and relative affinity for 14-3-3zeta. AANAT Thr31 phosphorylation on its own can enhance catalytic efficiency up to 7-fold through an interaction with 14-3-3zeta that lowers the substrate K m. This augmented catalytic profile is largely abolished by double phosphorylation at Thr31 and Ser205. A possible basis for this difference is the dual anchoring of doubly phosphorylated AANAT via one 14-3-3zeta heterodimer. We have developed a novel solution phase assay for accurate K D measurements of 14-3-3zeta-AANAT interaction using 14-3-3zeta fluorescently labeled with rhodamine by expressed protein ligation. We have also generated a doubly fluorescently labeled AANAT which can be used to assess the stability of this protein in a live cell, real-time assay by fluorescence resonance energy transfer measured by microscopic imaging. These studies offer new insights into the molecular basis of melatonin regulation and 14-3-3zeta interaction.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/química , N-Acetiltransferasa de Arilalquilamina/metabolismo , Secuencia de Aminoácidos , N-Acetiltransferasa de Arilalquilamina/genética , Sitios de Unión , Ritmo Circadiano , Clonación Molecular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cisteína , Homeostasis , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Fragmentos de Péptidos/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Mol Biol Cell ; 26(10): 1935-46, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25788287

RESUMEN

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master metabolic regulator that has been shown to inhibit the establishment of neuronal polarity/axogenesis under energy stress conditions, whereas brain-specific kinase (BRSK) promotes the establishment of axon-dendrite polarity and synaptic development. However, little information exists regarding the localized activity and regulation of these kinases in developing neurons. In this study, using a fluorescence resonance energy transfer (FRET)-based activity reporter that responds to both AMPK and BRSK, we found that BRSK activity is elevated in the distal region of axons in polarized hippocampal neurons before any stimulation and does not respond to either Ca(2+) or 2-deoxyglucose (2-DG) stimulation. In contrast, AMPK activity is stimulated by either Ca(2+) or 2-DG in the soma, dendrites, and axons of hippocampal neurons, with maximal stimulated activity observed in the distal region of the axon. Our study shows that the activities of both AMPK and BRSK are polarized in developing hippocampal neurons, with high levels in the distal region of extended axons.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hipocampo/enzimología , Neurogénesis/fisiología , Neuronas/enzimología , Receptor EphA5/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
7.
Cell Rep ; 11(4): 657-70, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25892241

RESUMEN

AMP-activated protein kinase (AMPK), whose activity is a critical determinant of cell health, serves a fundamental role in integrating extracellular and intracellular nutrient information into signals that regulate various metabolic processes. Despite the importance of AMPK, its specific roles within the different intracellular spaces remain unresolved, largely due to the lack of real-time, organelle-specific AMPK activity probes. Here, we present a series of molecular tools that allows for the measurement of AMPK activity at the different subcellular localizations and that allows for the rapid induction of AMPK inhibition. We discovered that AMPKα1, not AMPKα2, was the subunit that preferentially conferred spatial specificity to AMPK, and that inhibition of AMPK activity at the mitochondria was sufficient for triggering cytosolic ATP increase. These findings suggest that genetically encoded molecular probes represent a powerful approach for revealing the basic principles of the spatiotemporal nature of AMPK regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Quinasas Activadas por AMP/genética , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
ACS Chem Biol ; 8(1): 116-21, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23072367

RESUMEN

Molecular probes designed to monitor or perturb signaling events in living cells rely on engineered molecular switches. Here, we show that a kinase-inducible bimolecular switch comprising a kinase-specific substrate and a phosphoamino acid binding domain can be used for acute regulation of cellular events. As a proof of concept, we employed a Protein Kinase A (PKA)-dependent switch and coupled it to a lipid phosphatase to manipulate the level of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in living cells. PKA activation results in rapid degradation of PI(4,5)P(2). Conversely, when PKA is inhibited, dephosphorylation of the switch leads to the replenishment of PI(4,5)P(2). Thus, this strategy can be used for reversibly controlling enzymatic action in living cells. Furthermore, its genetic encodability and modular design should facilitate the adaptation of this approach to control different cellular activities as a function of phosphorylation-dependent input signals, thereby providing versatile tools for potentially perturbing or rewiring signaling pathways.


Asunto(s)
Sondas Moleculares/farmacología , Proteínas Quinasas/efectos de los fármacos , Animales , Células COS , Chlorocebus aethiops , Microscopía Confocal , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
9.
Respir Physiol Neurobiol ; 188(2): 83-93, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23727159

RESUMEN

Stimulation of the carotid body (CB) chemoreceptors by hypercapnia triggers a reflex ventilatory response via a cascade of cellular events, which includes generation of cAMP. However, it is not known if molecular CO2/HCO3(-) and/or H(+) mediate this effect and how these molecules contribute to cAMP production. We previously reported that the CB highly expresses HCO3(-)-sensitive soluble adenylyl cyclase (sAC). In the present study we systematically characterize the role of sAC in the CB, comparing the effect of isohydric hypercapnia (IH) in cAMP generation through activation of sAC or transmembrane-adenylyl cyclase (tmAC). Pharmacological deactivation of sAC and tmAC decreased the CB cAMP content in normocapnia and IH with no differences between these two conditions. Changes from normocapnia to IH did not effect the degree of PKA activation and the carotid sinus nerve discharge frequency. sAC and tmAC are functional in CB but intracellular elevations in CO2/HCO3(-) in IH conditions on their own are insufficient to further activate these enzymes, suggesting that the hypercapnic response is dependent on secondary acidosis.


Asunto(s)
Adenilil Ciclasas/metabolismo , Bicarbonatos/farmacología , Células Quimiorreceptoras/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Adenilil Ciclasas/clasificación , Adenilil Ciclasas/genética , Animales , Animales Recién Nacidos , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/metabolismo , Células Quimiorreceptoras/enzimología , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Ganglios Sensoriales/citología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Hipercapnia/enzimología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Nucleótidos Cíclicos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA