Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Infect Dis ; 227(10): 1203-1213, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36408618

RESUMEN

BACKGROUND: Although modified vaccinia Ankara-Bavarian Nordic (MVA-BN) vaccination is approved for smallpox and monkeypox prevention, immunological persistence and booster effects remain undescribed. METHODS: Participants naive to smallpox vaccination were randomized to 1 dose MVA-BN (1×MVA, n = 181), 2 doses MVA-BN (2×MVA, n = 183), or placebo (n = 181). Participants with previous smallpox vaccination received 1 MVA-BN booster (HSPX, n = 200). Subsets of the formerly naive groups (approximately 75 each) received an MVA-BN booster 2 years later. RESULTS: Neutralizing antibody (nAb) geometric mean titers (GMTs) increased from 1.1 (baseline, both naive groups) to 7.2 and 7.5 (week 4, 1×MVA and 2×MVA, respectively), and further to 45.6 (week 6, 2×MVA after second vaccination). In HSPX, nAb GMT rapidly increased from 21.6 (baseline) to 175.1 (week 2). At 2 years, GMTs for 1×MVA, 2×MVA, and HSPX were 1.1, 1.3, and 10.3, respectively. After boosting in the previously naive groups, nAb GMTs increased rapidly in 2 weeks to 80.7 (1×MVA) and 125.3 (2×MVA), higher than after primary vaccination and comparable to boosted HSPX subjects. Six months after boosting, GMTs were 25.6 (1×MVA) and 49.3 (2×MVA). No safety concerns were identified. CONCLUSIONS: Anamnestic responses to boosting without sustained high nAb titers support presence of durable immunological memory following primary MVA-BN immunization. Clinical Trials Registration. NCT00316524 and NCT00686582.


Asunto(s)
Vacuna contra Viruela , Viruela , Vaccinia , Humanos , Viruela/prevención & control , Anticuerpos Antivirales , Virus Vaccinia , Vacunación , Anticuerpos Neutralizantes
2.
N Engl J Med ; 381(20): 1897-1908, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31722150

RESUMEN

BACKGROUND: Many countries have stockpiled vaccines because of concerns about the reemergence of smallpox. Traditional smallpox vaccines are based on replicating vaccinia viruses; these vaccines have considerable side effects. METHODS: To evaluate the efficacy of modified vaccinia Ankara (MVA) as a potential smallpox vaccine, we randomly assigned 440 participants to receive two doses of MVA followed by one dose of the established replicating-vaccinia vaccine ACAM2000 (the MVA group) or to receive one dose of ACAM2000 (the ACAM2000-only group). The two primary end points were noninferiority of the MVA vaccine to ACAM2000 with respect to the peak serum neutralizing antibody titers and attenuation of the ACAM2000-associated major cutaneous reaction by previous MVA vaccination, measured according to the maximum lesion area and the derived area attenuation ratio. RESULTS: A total of 220 and 213 participants were randomly assigned and vaccinated in the MVA group and ACAM2000-only group, respectively, and 208 participants received two MVA vaccinations. At peak visits, MVA vaccination induced a geometric mean titer of neutralizing antibodies of 153.5 at week 6, as compared with 79.3 at week 4 with ACAM2000 (a ratio of 1.94 [95% confidence interval {CI}, 1.56 to 2.40]). At day 14, the geometric mean titer of neutralizing antibodies induced by a single MVA vaccination (16.2) was equal to that induced by ACAM2000 (16.2), and the percentages of participants with seroconversion were similar (90.8% and 91.8%, respectively). The median lesion areas of the major cutaneous reaction were 0 mm2 in the MVA group and 76.0 mm2 in the ACAM2000-only group, resulting in an area attenuation ratio of 97.9% (95% CI, 96.6 to 98.3). There were fewer adverse events or adverse events of grade 3 or higher after both MVA vaccination periods in the MVA group than in the ACAM2000-only group (17 vs. 64 participants with adverse events of grade 3 or higher, P<0.001). CONCLUSIONS: No safety concerns associated with the MVA vaccine were identified. Immune responses and attenuation of the major cutaneous reaction suggest that this MVA vaccine protected against variola infection. (Funded by the Office of the Assistant Secretary for Preparedness and Response Biomedical Advanced Research and Development Authority of the Department of Health and Human Services and Bavarian Nordic; ClinicalTrials.gov number, NCT01913353.).


Asunto(s)
Anticuerpos Antivirales/sangre , Vacuna contra Viruela/inmunología , Viruela/prevención & control , Virus Vaccinia/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Femenino , Humanos , Masculino , Viruela/inmunología , Vacuna contra Viruela/efectos adversos , Resultado del Tratamiento , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Adulto Joven
3.
J Infect Dis ; 223(6): 1062-1072, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32726422

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in young children and the elderly. Protective immunity is not generated after repeated infections, but vaccination may hopefully prove effective. METHODS: This phase 2 clinical study investigated a multivalent RSV vaccine (MVA-BN-RSV) designed to induce broad antibody and cellular immune responses by encoding RSV surface proteins F, G (for both A and B subtypes), and internal antigens (M2, N). This study evaluated the immune response in adults aged ≥55 years to identify the optimal MVA-BN-RSV dose and vaccination schedule. RESULTS: A single dose increased the levels of neutralizing (plaque reduction neutralization test to RSV A and B) and total (IgG and IgA ELISA) antibodies (1.6 to 3.4-fold increase from baseline) and induced a broad Th1-biased cellular immune response (interferon-γ ELISPOT) to all 5 vaccine inserts (5.4 to 9.7-fold increases). Antibody responses remained above baseline for 6 months. A 12-month booster dose elicited a booster effect in antibody and T-cell responses (up to 2.8-fold from preboost levels). No drug-related serious adverse events were reported. CONCLUSIONS: MVA-BN-RSV induces a broad immune response that persists at least 6 months and can be boosted at 12 months, without significant safety findings. CLINICAL TRIALS REGISTRATION: NCT02873286.


Asunto(s)
Formación de Anticuerpos , Inmunidad Celular , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Humanos , Inmunización Secundaria , Persona de Mediana Edad , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas Combinadas , Virus Vaccinia
4.
JAMA ; 315(15): 1610-23, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27092831

RESUMEN

IMPORTANCE: Developing effective vaccines against Ebola virus is a global priority. OBJECTIVE: To evaluate an adenovirus type 26 vector vaccine encoding Ebola glycoprotein (Ad26.ZEBOV) and a modified vaccinia Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). DESIGN, SETTING, AND PARTICIPANTS: Single-center, randomized, placebo-controlled, observer-blind, phase 1 trial performed in Oxford, United Kingdom, enrolling healthy 18- to 50-year-olds from December 2014; 8-month follow-up was completed October 2015. INTERVENTIONS: Participants were randomized into 4 groups, within which they were simultaneously randomized 5:1 to receive study vaccines or placebo. Those receiving active vaccines were primed with Ad26.ZEBOV (5 × 10(10) viral particles) or MVA-BN-Filo (1 × 10(8) median tissue culture infective dose) and boosted with the alternative vaccine 28 or 56 days later. A fifth, open-label group received Ad26.ZEBOV boosted by MVA-BN-Filo 14 days later. MAIN OUTCOMES AND MEASURES: The primary outcomes were safety and tolerability. All adverse events were recorded until 21 days after each immunization; serious adverse events were recorded throughout the trial. Secondary outcomes were humoral and cellular immune responses to immunization, as assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot performed at baseline and from 7 days after each immunization until 8 months after priming immunizations. RESULTS: Among 87 study participants (median age, 38.5 years; 66.7% female), 72 were randomized into 4 groups of 18, and 15 were included in the open-label group. Four participants did not receive a booster dose; 67 of 75 study vaccine recipients were followed up at 8 months. No vaccine-related serious adverse events occurred. No participant became febrile after MVA-BN-Filo, compared with 3 of 60 participants (5%; 95% CI, 1%-14%) receiving Ad26.ZEBOV in the randomized groups. In the open-label group, 4 of 15 Ad26.ZEBOV recipients (27%; 95% CI, 8%-55%) experienced fever. In the randomized groups, 28 of 29 Ad26.ZEBOV recipients (97%; 95% CI, 82%- 99.9%) and 7 of 30 MVA-BN-Filo recipients (23%; 95% CI, 10%-42%) had detectable Ebola glycoprotein-specific IgG 28 days after primary immunization. All vaccine recipients had specific IgG detectable 21 days postboost and at 8-month follow-up. Within randomized groups, at 7 days postboost, at least 86% of vaccine recipients showed Ebola-specific T-cell responses. CONCLUSIONS AND RELEVANCE: In this phase 1 study of healthy volunteers, immunization with Ad26.ZEBOV or MVA-BN-Filo did not result in any vaccine-related serious adverse events. An immune response was observed after primary immunization with Ad26.ZEBOV; boosting by MVA-BN-Filo resulted in sustained elevation of specific immunity. These vaccines are being further assessed in phase 2 and 3 studies. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02313077.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Humoral , Adulto , Vacunas contra el Virus del Ébola/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos , Voluntarios Sanos , Humanos , Inmunidad Celular , Inmunización Secundaria , Masculino , Marburgvirus/inmunología , Persona de Mediana Edad , Método Simple Ciego , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vaccinia/inmunología , Proteínas Virales/inmunología
5.
Vaccine ; 38(11): 2608-2619, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32057576

RESUMEN

Respiratory disease caused by RSV infection is recognized as a severe public health issue in infants, young children and elderly with no specific treatment option. Vaccination may be the most effective strategy to combat this highly infectious virus although no vaccine has been approved. The novel vaccine candidate MVA-BN-RSV encodes RSV surface proteins F and G (subtypes A, B) as well as internal proteins N and M2 in the MVA-BN viral vector backbone to provide broad protection against RSV. This was a first in human study to investigate safety, reactogenicity and immunogenicity of MVA-BN-RSV. Sixty-three participants were allocated to 3 groups: adult (18-49 years) low (1 × 107 TCID50) or high (1 × 108 TCID50) dose and older adult (50-65 years) high dose. Participants in each group were randomized in a 6:1 ratio to receive 2 doses of MVA-BN-RSV or placebo 4 weeks apart and were monitored for 30 weeks. All participants completed the study, receiving both doses. No serious AEs or AEs of special interest were reported. The most common AEs were injection site pain (56% in the combined high dose groups, 17% in the low dose group). MVA-BN-RSV induced robust T cell responses covering all 5 inserts with fold increases ranging from 1.8 to 3.8. Higher and broader responses were observed in the high dose groups (83% responders to at least 3 peptide pools in the combined high dose groups compared to 63% in the low dose group). Moderate but consistent humoral responses were observed against A and B RSV subtypes (up to approximately 2-fold increases in the high dose groups). No differences were observed between the adult and the older adult groups in safety, reactogenicity or immunogenicity. The study demonstrated that the well tolerated MVA-BN-RSV vaccine candidate induces broad cellular and humoral immune responses, warranting further development.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Vaccinia/genética , Adulto , Anciano , Anticuerpos Antivirales/sangre , Vectores Genéticos , Humanos , Inmunogenicidad Vacunal , Persona de Mediana Edad , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Adulto Joven
6.
PLoS One ; 13(4): e0195897, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29652929

RESUMEN

BACKGROUND: Modified Vaccinia Ankara (MVA) is a live, viral vaccine under advanced development as a non-replicating smallpox vaccine. A randomised, double-blind, placebo-controlled phase III clinical trial was conducted to demonstrate the humoral immunogenic equivalence of three consecutively manufactured MVA production lots, and to confirm the safety and tolerability of MVA focusing on cardiac readouts. METHODS: The trial was conducted at 34 sites in the US. Vaccinia-naïve adults aged 18-40 years were randomly allocated to one of four groups using a 1:1:1:1 randomization scheme. Subjects received either two MVA injections from three consecutive lots (Groups 1-3), or two placebo injections (Group 4), four weeks apart. Everyone except personnel involved in vaccine handling and administration was blinded to treatment. Safety assessment focused on cardiac monitoring throughout the trial. Vaccinia-specific antibody titers were measured using a Plaque Reduction Neutralization Test (PRNT) and an Enzyme-Linked Immunosorbent Assay (ELISA). The primary immunogenicity endpoint was Geometric Mean Titers (GMTs) after two MVA vaccinations measured by PRNT at trial visit 4. This trial is registered with ClinicalTrials.gov, number NCT01144637. RESULTS: Between March 2013 and May 2014, 4005 subjects were enrolled and received at least one injection of MVA (n = 3003) or placebo (n = 1002). The three MVA lots induced equivalent antibody titers two weeks after the second vaccination, with seroconversion rates of 99·8% (PRNT) and 99·7% (ELISA). Overall, 180 (6·0%) subjects receiving MVA and 29 (2·9%) subjects in the placebo group reported at least one unsolicited Adverse Event (AE) that was considered trial-related. Vaccination was well tolerated without significant safety concerns, particularly regarding cardiac assessment. CONCLUSIONS: The neutralizing and total antibody titers induced by each of the three lots were equivalent. No significant safety concerns emerged in this healthy trial population, especially regarding cardiac safety, thus confirming the excellent safety and tolerability profile of MVA. TRIAL REGISTRATION: ClinicalTrials.gov NCT01144637.


Asunto(s)
Inmunogenicidad Vacunal , Vacuna contra Viruela/efectos adversos , Vacuna contra Viruela/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Inmunización Secundaria , Masculino , Seroconversión , Vacuna contra Viruela/normas , Estados Unidos , Vacunación , Vacunas de ADN , Vacunas Virales/normas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA