Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(1): 99-116, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36535377

RESUMEN

Numerous cancers, including prostate cancer (PCa), are addicted to transcription programs driven by specific genomic regions known as super-enhancers (SEs). The robust transcription of genes at such SEs is enabled by the formation of phase-separated condensates by transcription factors and coactivators with intrinsically disordered regions. The androgen receptor (AR), the main oncogenic driver in PCa, contains large disordered regions and is co-recruited with the transcriptional coactivator mediator complex subunit 1 (MED1) to SEs in androgen-dependent PCa cells, thereby promoting oncogenic transcriptional programs. In this work, we reveal that full-length AR forms foci with liquid-like properties in different PCa models. We demonstrate that foci formation correlates with AR transcriptional activity, as this activity can be modulated by changing cellular foci content chemically or by silencing MED1. AR ability to phase separate was also validated in vitro by using recombinant full-length AR protein. We also demonstrate that AR antagonists, which suppress transcriptional activity by targeting key regions for homotypic or heterotypic interactions of this receptor, hinder foci formation in PCa cells and phase separation in vitro. Our results suggest that enhanced compartmentalization of AR and coactivators may play an important role in the activation of oncogenic transcription programs in androgen-dependent PCa.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Andrógenos , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Expresión Génica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208290

RESUMEN

Resistance to drug treatments is common in prostate cancer (PCa), and the gain-of-function mutations in human androgen receptor (AR) represent one of the most dominant drivers of progression to resistance to AR pathway inhibitors (ARPI). Previously, we evaluated the in vitro response of 24 AR mutations, identified in men with castration-resistant PCa, to five AR antagonists. In the current work, we evaluated 44 additional PCa-associated AR mutants, reported in the literature, and thus expanded the study of the effect of darolutamide to a total of 68 AR mutants. Unlike other AR antagonists, we demonstrate that darolutamide exhibits consistent efficiency against all characterized gain-of-function mutations in a full-length AR. Additionally, the response of the AR mutants to clinically used bicalutamide and enzalutamide, as well as to major endogenous steroids (DHT, estradiol, progesterone and hydrocortisone), was also investigated. As genomic profiling of PCa patients becomes increasingly feasible, the developed "AR functional encyclopedia" could provide decision-makers with a tool to guide the treatment choice for PCa patients based on their AR mutation status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA