Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Intervalo de año de publicación
1.
Gut ; 73(3): 496-508, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37758326

RESUMEN

OBJECTIVE: Cytotoxic agents are the cornerstone of treatment for patients with advanced intrahepatic cholangiocarcinoma (iCCA), despite heterogeneous benefit. We hypothesised that the pretreatment molecular profiles of diagnostic biopsies can predict patient benefit from chemotherapy and define molecular bases of innate chemoresistance. DESIGN: We identified a cohort of advanced iCCA patients with comparable baseline characteristics who diverged as extreme outliers on chemotherapy (survival <6 m in rapid progressors, RP; survival >23 m in long survivors, LS). Diagnostic biopsies were characterised by digital pathology, then subjected to whole-transcriptome profiling of bulk and geospatially macrodissected tissue regions. Spatial transcriptomics of tumour-infiltrating myeloid cells was performed using targeted digital spatial profiling (GeoMx). Transcriptome signatures were evaluated in multiple cohorts of resected cancers. Signatures were also characterised using in vitro cell lines, in vivo mouse models and single cell RNA-sequencing data. RESULTS: Pretreatment transcriptome profiles differentiated patients who would become RPs or LSs on chemotherapy. Biologically, this signature originated from altered tumour-myeloid dynamics, implicating tumour-induced immune tolerogenicity with poor response to chemotherapy. The central role of the liver microenviroment was confrmed by the association of the RPLS transcriptome signature with clinical outcome in iCCA but not extrahepatic CCA, and in liver metastasis from colorectal cancer, but not in the matched primary bowel tumours. CONCLUSIONS: The RPLS signature could be a novel metric of chemotherapy outcome in iCCA. Further development and validation of this transcriptomic signature is warranted to develop precision chemotherapy strategies in these settings.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Animales , Ratones , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39073766

RESUMEN

OBJECTIVES: We aimed to compare the stability of the newly developed ß-lactams (cefiderocol) and ß-lactam/ß-lactamase inhibitor combinations (ceftazidime/avibactam, ceftolozane/tazobactam, aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam) against the most clinically relevant mechanisms of mutational and transferable ß-lactam resistance in Pseudomonas aeruginosa. METHODS: We screened a collection of 61 P. aeruginosa PAO1 derivatives. Eighteen isolates displayed the most relevant mechanisms of mutational resistance to ß-lactams. The other 43 constructs expressed transferable ß-lactamases from genes cloned in pUCP-24. MICs were determined by reference broth microdilution. RESULTS: Cefiderocol and imipenem/relebactam exhibited excellent in vitro activity against all of the mutational resistance mechanisms studied. Aztreonam/avibactam, cefepime/taniborbactam, cefepime/zidebactam, meropenem/vaborbactam, meropenem/nacubactam and meropenem/xeruborbactam proved to be more vulnerable to mutational events, especially to overexpression of efflux operons. The agents exhibiting the widest spectrum of activity against transferable ß-lactamases were aztreonam/avibactam and cefepime/zidebactam, followed by cefepime/taniborbactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam. However, some MBLs, particularly NDM enzymes, may affect their activity. Combined production of certain enzymes (e.g. NDM-1) with increased MexAB-OprM-mediated efflux and OprD deficiency results in resistance to almost all agents tested, including last options such as aztreonam/avibactam and cefiderocol. CONCLUSIONS: Cefiderocol and new ß-lactam/ß-lactamase inhibitor combinations show promising and complementary in vitro activity against mutational and transferable P. aeruginosa ß-lactam resistance. However, the combined effects of efflux pumps, OprD deficiency and efficient ß-lactamases could still result in the loss of all therapeutic options. Resistance surveillance, judicious use of new agents and continued drug development efforts are encouraged.

3.
Blood ; 139(22): 3303-3313, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35313334

RESUMEN

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) outcome has improved in the last decades, but leukemic relapses are still one of the main problems of this disease. Bone morphogenetic protein 4 (BMP4) was investigated as a new candidate biomarker with potential prognostic relevance, and its pathogenic role was assessed in the development of disease. A retrospective study was performed with 115 pediatric patients with BCP-ALL, and BMP4 expression was analyzed by quantitative reverse transcription polymerase chain reaction in leukemic blasts at the time of diagnosis. BMP4 mRNA expression levels in the third (upper) quartile were associated with a higher cumulative incidence of relapse as well as a worse 5-year event-free survival and central nervous system (CNS) involvement. Importantly, this association was also evident among children classified as having a nonhigh risk of relapse. A validation cohort of 236 patients with BCP-ALL supported these data. Furthermore, high BMP4 expression promoted engraftment and rapid disease progression in an NSG mouse xenograft model with CNS involvement. Pharmacological blockade of the canonical BMP signaling pathway significantly decreased CNS infiltration and consistently resulted in amelioration of clinical parameters, including neurological score. Mechanistically, BMP4 favored chemoresistance, enhanced adhesion and migration through brain vascular endothelial cells, and promoted a proinflammatory microenvironment and CNS angiogenesis. These data provide evidence that BMP4 expression levels in leukemic cells could be a useful biomarker to identify children with poor outcomes in the low-/intermediate-risk groups of BCP-ALL and that BMP4 could be a new therapeutic target to blockade leukemic CNS disease.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Proteína Morfogenética Ósea 4/genética , Niño , Células Endoteliales/metabolismo , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Recurrencia , Estudios Retrospectivos , Microambiente Tumoral
4.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38148145

RESUMEN

AIMS: To evaluate the antifungal and antibiofilm activity of gallic acid derivatives TPP+-C10 and TPP+-C12 and their effects on mitochondrial function on two Candida albicans reference strains (ATCC 90029 and ATCC 10231). METHODS AND RESULTS: First, we determined minimal inhibitory concentration (MIC) using a microdilution assay. Both compounds exerted antifungal effects, and their MICs ranged from 3.9 to 13 µM, with no statistically significant differences between them (P > 0.05, t-test). These concentrations served as references for following assays. Subsequently, we measured oxygen consumption with a Clark electrode. Our observations revealed that both drugs inhibited oxygen consumption in both strains with TPP+-C12 exerting a more pronounced inhibitory effect. We then employed flow cytometry with TMRE as a probe to assess mitochondrial membrane potential. For each strain assayed, the compounds induced a decay in transmembrane potential by 75%-90% compared to the control condition (P < 0.05, ANOVA). Then, we measured ATP levels using a commercial kit. TPP+-C12 showed a 50% decrease of ATP content (P < 0.05 ANOVA), while TPP+-C10 exhibited a less pronounced effect. Finally, we assessed the antibiofilm effect using the MTT reduction assay. Both compounds were effective, but TPP+-C12 displayed a greater potency, requiring a lower concentration to inhibit 50% of biofilms viability (P < 0.05, t-test). CONCLUSIONS: Derivatives of gallic acid linked to a TPP+ group exert antifungal and antibiofilm activity through impairment of mitochondrial function in C. albicans.


Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/farmacología , Ácido Gálico/farmacología , Pruebas de Sensibilidad Microbiana , Biopelículas , Mitocondrias , Adenosina Trifosfato
5.
Euro Surveill ; 29(15)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606569

RESUMEN

BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacología , beta-Lactamasas/genética , Proteína 1 Similar al Receptor de Interleucina-1 , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Genómica , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
6.
Eur J Contracept Reprod Health Care ; 29(3): 131-137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683765

RESUMEN

METHODS: Retrospective cohort study with review of medical records of women assisted between 2015 and 2020. The variables were socio-demographic and SV characteristics, gestational age, reactions towards pregnancy and outcome. We compared outcome groups using the chi-square test, Fisher's exact test and the Kruskal-Wallis test. The significance level was 5%. RESULTS: We evaluated the medical records of 235 women, of which 153(65%) had undergone to abortion; 17(7.2%) had a spontaneous abortion; 19(8%) remained pregnant; 25(10.6%) had an abortion denied; and 21(8.9%) had been lost to follow-up. Out of the total number of women, 44(18.7%) were adolescents, 152(65.2%) were white and 201(88.5%) had an education ≥9 years. Women who remained pregnant had a known aggressor, disclosed the pregnancy (p < 0.001) and were more ambivalent (p < 0.001) than the other groups. Gestational age was higher in the denied abortion group than in the performed abortion group (p < 0.001). CONCLUSION: Feelings related to decision-making about abortion affected all groups, with differences. It is important to give women space to be heard, so they can make their own decisions.


Abortion care is possible in places with restrictive laws; however, women with more vulnerable characteristics did not seek the service. Legal restrictions interfere with women's decision-making about abortion and can promote inequality in gaining access to health services.


Asunto(s)
Aborto Legal , Humanos , Femenino , Embarazo , Estudios Retrospectivos , Brasil , Adulto , Aborto Legal/legislación & jurisprudencia , Aborto Legal/estadística & datos numéricos , Aborto Legal/psicología , Adulto Joven , Adolescente , Aborto Inducido/legislación & jurisprudencia , Aborto Inducido/psicología , Aborto Inducido/estadística & datos numéricos , Edad Gestacional , Resultado del Embarazo , Aborto Espontáneo/psicología , Aborto Espontáneo/epidemiología
7.
J Environ Sci (China) ; 140: 306-318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331510

RESUMEN

The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed.


Asunto(s)
Metanol , Tecnología , Biomasa , Calor , Catálisis
8.
Curr Issues Mol Biol ; 45(9): 7075-7086, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37754231

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death worldwide. It has been reported that genetic and epigenetic factors play a crucial role in the onset and evolution of lung cancer. Previous reports have shown that essential transcription factors in embryonic development contribute to this pathology. Runt-related transcription factor (RUNX) proteins belong to a family of master regulators of embryonic developmental programs. Specifically, RUNX2 is the master transcription factor (TF) of osteoblastic differentiation, and it can be involved in pathological conditions such as prostate, thyroid, and lung cancer by regulating apoptosis and mesenchymal-epithelial transition processes. In this paper, we identified TALAM1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) as a genetic target of the RUNX2 TF in lung cancer and then performed functional validation of the main findings. METHODS: We performed ChIP-seq analysis of tumor samples from a patient diagnosed with lung adenocarcinoma to evaluate the target genes of the RUNX2 TF. In addition, we performed shRNA-mediated knockdown of RUNX2 in this lung adenocarcinoma cell line to confirm the regulatory role of RUNX2 in TALAM1 expression. RESULTS: We observed RUNX2 overexpression in cell lines and primary cultured lung cancer cells. Interestingly, we found that lncRNA TALAM1 was a target of RUNX2 and that RUNX2 exerted a negative regulatory effect on TALAM1 transcription.

9.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195077

RESUMEN

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Asunto(s)
Antiinfecciosos , Enterobacteriaceae Resistentes a los Carbapenémicos , Enterobacter cloacae , Carbapenémicos/farmacología , Sideróforos/farmacología , Cefalosporinas/farmacología , beta-Lactamasas/metabolismo , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Cefiderocol
10.
J Antimicrob Chemother ; 78(5): 1195-1200, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918743

RESUMEN

OBJECTIVES: To describe and characterize the emergence of resistance to ceftolozane/tazobactam, ceftazidime/avibactam and imipenem/relebactam in a patient receiving ceftazidime/avibactam treatment for an MDR Pseudomonas aeruginosa CNS infection. METHODS: One baseline (PA1) and two post-exposure (PA2 and PA3) isolates obtained before and during treatment of a nosocomial P. aeruginosa meningoventriculitis were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. The impact on ß-lactam resistance of mutations in blaPDC and mexR was determined through cloning experiments and complementation assays. RESULTS: Isolate PA1 showed baseline resistance mutations in DacB (I354A) and OprD (N142fs) conferring resistance to conventional antipseudomonals but susceptibility to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. Post-exposure isolates showed two divergent ceftazidime/avibactam-resistant phenotypes associated with distinctive mutations affecting the intrinsic P PDC ß-lactamase (S254Ins) (PA2: ceftolozane/tazobactam and ceftazidime/avibactam-resistant) or MexAB-OprM negative regulator MexR in combination with modification of PBP3 (PA3: ceftazidime/avibactam and imipenem/relebactam-relebactam-resistant). Cloning experiments demonstrated the role of PDC modification in resistance to ceftolozane/tazobactam and ceftazidime/avibactam. Complementation with a functional copy of the mexR gene in isolate PA3 restored imipenem/relebactam susceptibility. CONCLUSIONS: We demonstrated how P. aeruginosa may simultaneously develop resistance and compromise the activity of new ß-lactam/ß-lactamase inhibitor combinations when exposed to ceftazidime/avibactam through selection of mutations leading to PDC modification and up-regulation of MexAB-OprM-mediated efflux.


Asunto(s)
Ceftazidima , Infecciones por Pseudomonas , Humanos , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Cefalosporinasa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Tazobactam/farmacología , Combinación de Medicamentos , Imipenem/farmacología , Imipenem/uso terapéutico , Pseudomonas aeruginosa/genética , Pruebas de Sensibilidad Microbiana
12.
Eur J Pediatr ; 182(11): 4867-4874, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37587378

RESUMEN

Urinary tract infections are the initial manifestation in 30% of urinary tract malformations. Identifying these patients, who could benefit from a specific treatment, is still challenging. Hyponatremia during urinary tract infection has been proposed as a urinary tract malformation marker. We evaluate the prevalence of hyponatremia during febrile urinary tract infections and its association with subjacent urinary tract malformations. We performed a retrospective study of healthy patients under 16 years, diagnosed with a first episode of febrile urinary tract infection, who had undergone blood testing in the acute episode and at least one renal ultrasound during follow-up (January 2014-November 2020). Hyponatremia was defined as (serum sodium ≤ 130 mEq/L). According to imaging findings, we classified patients into three groups: normal kidney ultrasound, mild pelviectasis, and significant urinary tract malformation. We performed logistic regression models to identify independent risk factors for urinary tract malformation and mild pelviectasis. We included 492 patients and 2.8% presented hyponatremia. We identified normal ultrasound in 77%, mild pelviectasis in 10.8%, and urinary tract malformation in 12% of patients. We found an association between mild pelviectasis and hyponatremia [OR 6.6 (CI95% 1.6-26.6)]. However, we found no association between hyponatremia and urinary tract malformation. The parameters that were associated with malformations were presenting a non-E. coli infection, C-reactive-protein levels over 80 mg/L, and bacteremia. CONCLUSION: Hyponatremia during the first episode of febrile urinary tract infection is present in 2.8% of patients and is associated with mild pelviectasis in imaging. However, hyponatremia does not indicate a greater need for complementary tests to screen for urinary tract malformations. WHAT IS KNOWN: • Urinary tract infection is the first manifestation in 30% of children with urinary tract malformation. • Hyponatremia could be a marker to identify these children and guide the imaging approach. WHAT IS NEW: • Around 12% of children with a first episode of febrile urinary tract infection have a urinary tract malformation. • Non-E. coli infection, C-reactive protein levels over 80 mg/L, and bacteremia are markers for malformations to guide diagnostic imaging tests, but hyponatremia (Na ≤ 130 mEq/l) is not a reliable marker.


Asunto(s)
Bacteriemia , Hiponatremia , Infecciones Urinarias , Humanos , Niño , Lactante , Hiponatremia/diagnóstico , Hiponatremia/etiología , Estudios Retrospectivos , Infecciones Urinarias/complicaciones , Infecciones Urinarias/diagnóstico , Factores de Riesgo
13.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674679

RESUMEN

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance that is diagnosed for the first time during pregnancy. The objective of this study is to know the glucose tolerance status after 15 years of pregnancy in patients diagnosed with gestational diabetes and to assess the long-term effect of GDM on the circulating miRNA profile of these women. To answer these, 30 randomly selected women diagnosed with GDM during 2005-2006 were included in the study, and glucose tolerance was measured using the National Diabetes Data Group criteria. Additionally, four miRNAs (hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-329-3p, hsa-miR-543) were selected for their analysis in the plasma of women 15 years after the diagnosis of GDM. In our study we discovered that, fifteen years after the diagnosis of GDM, 50% of women have some degree of glucose intolerance directly related to body weight and body mass index during pregnancy. Dysglycemic women also showed a significantly increased level of circulating hsa-miR-24-3p. Thus, we can conclude that initial weight and BMI, together with circulating expression levels of hsa-miR-24-3p, could be good predictors of the future development of dysglycemia in women with a previous diagnosis of GDM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerancia a la Glucosa , MicroARNs , Embarazo , Humanos , Femenino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Intolerancia a la Glucosa/diagnóstico , Intolerancia a la Glucosa/genética , MicroARNs/genética , Factores de Riesgo , Glucosa
14.
Int Soc Work ; 66(1): 144-157, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36687131

RESUMEN

This article discusses the violence perpetrated by clients against social workers who provided services to COVID-19 patients and their families in Chilean hospitals during the initial peak of the disease in the country. In this way, this becomes the first study to analyze client violence toward social workers in the health crisis generated by the pandemic. The results indicate that the presence of aggressions from clients is high and social workers' coping strategies are passive. Finally, the urgent call for prevention and the need for research are presented.

15.
J Hepatol ; 76(4): 850-861, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34958836

RESUMEN

BACKGROUND & AIMS: Owing to the lack of genetic animal models that adequately recreate key clinical characteristics of cirrhosis, the molecular pathogenesis of cirrhosis has been poorly characterized, and treatments remain limited. Hence, we aimed to better elucidate the pathological mechanisms of cirrhosis using a novel murine model. METHODS: We report on the first murine genetic model mimicking human cirrhosis induced by hepatocyte-specific elimination of microspherule protein 1 (MCRS1), a member of non-specific lethal (NSL) and INO80 chromatin-modifier complexes. Using this genetic tool with other mouse models, cell culture and human samples, combined with quantitative proteomics, single nuclei/cell RNA sequencing and chromatin immunoprecipitation assays, we investigated mechanisms of cirrhosis. RESULTS: MCRS1 loss in mouse hepatocytes modulates the expression of bile acid (BA) transporters - with a pronounced downregulation of Na+-taurocholate cotransporting polypeptide (NTCP) - concentrating BAs in sinusoids and thereby activating hepatic stellate cells (HSCs) via the farnesoid X receptor (FXR), which is predominantly expressed in human and mouse HSCs. Consistently, re-expression of NTCP in mice reduces cirrhosis, and genetic ablation of FXR in HSCs suppresses fibrotic marks in mice and in vitro cell culture. Mechanistically, deletion of a putative SANT domain from MCRS1 evicts histone deacetylase 1 from its histone H3 anchoring sites, increasing histone acetylation of BA transporter genes, modulating their expression and perturbing BA flow. Accordingly, human cirrhosis displays decreased nuclear MCRS1 and NTCP expression. CONCLUSIONS: Our data reveal a previously unrecognized function of MCRS1 as a critical histone acetylation regulator, maintaining gene expression and liver homeostasis. MCRS1 loss induces acetylation of BA transporter genes, perturbation of BA flow, and consequently, FXR activation in HSCs. This axis represents a central and universal signaling event in cirrhosis, which has significant implications for cirrhosis treatment. LAY SUMMARY: By genetic ablation of MCRS1 in mouse hepatocytes, we generate the first genetic mouse model of cirrhosis that recapitulates human features. Herein, we demonstrate that the activation of the bile acid/FXR axis in liver fibroblasts is key in cirrhosis development.


Asunto(s)
Histonas , Proteínas de Unión al ARN , Receptores Citoplasmáticos y Nucleares , Acetilación , Animales , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras , Histonas/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Glicoproteínas de Membrana , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
16.
Antimicrob Agents Chemother ; 66(2): e0167621, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34807754

RESUMEN

The global distribution of carbapenemases such as KPC, OXA-48, and metallo-ß-lactamases (MBLs) gives cause for concern, as these enzymes are not inhibited by classical ß-lactamase inhibitors (BLIs). The current development of new inhibitors is one of the most promising highlights for the treatment of multidrug-resistant bacteria. The activity of cefepime in combination with the novel BLIs zidebactam, taniborbactam, and enmetazobactam was studied in a collection of 400 carbapenemase-producing Enterobacterales (CPE). The genomes were fully sequenced and potential mechanisms of resistance to cefepime/BLI combinations were characterized. Cefepime resistance in the whole set of isolates was 79.5% (MIC50/90 64/≥128mg/L). The cefepime/zidebactam and cefepime/taniborbactam combinations showed the highest activity (MIC50/90 ≤0.5/1 and ≤0.5/2 mg/L, respectively). Cefepime/zidebactam displayed high activity, regardless of the carbapenemase or extended-spectrum ß-lactamase (ESBL) considered (99% of isolates displayed MIC ≤2 mg/L). Cefepime/taniborbactam displayed excellent activity against OXA-48- and KPC-producing Enterobacterales and lower activity against MBL-producing isolates (four strains yielded MICs ≥16 mg/L: 2 NDM producers with an insertion in PBP3, one VIM-1 producer with nonfunctional OmpK35, and one IMP-8 producer). Cefepime/enmetazobactam displayed the lowest activity (MIC50/90 1/≥128 mg/L), with MICs ≥16 mg/L for 49 MBL producers, 40 OXA-48 producers (13 with amino acid changes in OmpK35/36, 4 in PBPs and 11 in RamR) and 25 KPC producers (most with an insertion in OmpK36). These results confirm the therapeutic potential of the new ß-lactamase inhibitors, shedding light on the activity of cefepime and BLIs against CPE and resistance mechanisms. The cefepime/zidebactam and cefepime/taniborbactam combinations are particularly highlighted as promising alternatives to penicillin-based inhibitors for the treatment of CPE.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas , Ácidos Borínicos , Ácidos Carboxílicos , Cefepima/farmacología , Ciclooctanos , Pruebas de Sensibilidad Microbiana , Penicilinas , Piperidinas , Triazoles , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
17.
Antimicrob Agents Chemother ; 66(2): e0206721, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930034

RESUMEN

Infections caused by ceftolozane-tazobactam and ceftazidime-avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane-tazobactam and ceftazidime-avibactam resistance mechanisms in all multidrug-resistant or extensively drug-resistant (MDR/XDR) P. aeruginosa isolates recovered during 1 year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane-tazobactam and ceftazidime-avibactam resistance were evaluated. Clinical conditions, previous positive cultures, and ß-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. Multilocus sequence types (MLSTs) and resistance mechanisms were determined using short- and long-read whole-genome sequencing (WGS). The impact of Pseudomonas-derived cephalosporinases (PDCs) on ß-lactam resistance was demonstrated by cloning into an ampC-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired ß-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane-tazobactam or ceftazidime-avibactam. Seven isolates from different sequence types (STs) owed their ß-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219, and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. The 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13) and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlighted that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.


Asunto(s)
Ceftazidima , Infecciones por Pseudomonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Proteínas Bacterianas , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Combinación de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Tazobactam/farmacología , Tazobactam/uso terapéutico , beta-Lactamasas/genética , beta-Lactamasas/uso terapéutico
18.
J Antimicrob Chemother ; 77(10): 2809-2815, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35904000

RESUMEN

OBJECTIVES: To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa ß-lactamase mutants. METHODS: The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different ß-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies. RESULTS: For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes. CONCLUSIONS: Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections.


Asunto(s)
Ceftazidima , Infecciones por Pseudomonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Ácidos Borínicos , Ácidos Carboxílicos , Cefepima/farmacología , Cefepima/uso terapéutico , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , Ciclooctanos , Humanos , Imipenem/farmacología , Imipenem/uso terapéutico , Piperidinas , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacología , Tazobactam/uso terapéutico , beta-Lactamasas/genética , Cefiderocol
19.
Appl Environ Microbiol ; 88(1): e0184221, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34705547

RESUMEN

Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60°C and 70°C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25°C. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modeling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases. IMPORTANCE A myriad of consumer products contains polyethylene terephthalate (PET), a plastic that has accumulated as waste in the environment due to its long-term stability and poor waste management. One promising solution is the enzymatic biodegradation of PET, with most known enzymes only catalyzing this process at high temperatures. Here, we bioinformatically identified and biochemically characterized an enzyme from an Antarctic organism that degrades PET at 25°C with similar efficiency to the few PET-degrading enzymes active at moderate temperatures. Reasoning that Antarctica harbors other PET-degrading enzymes, we analyzed available data from Antarctic metagenomic samples and successfully identified other potential enzymes. Our findings contribute to increasing the repertoire of known PET-degrading enzymes that are currently being considered as biocatalysts for the biological recycling of plastic waste.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Regiones Antárticas , Hidrolasas/genética , Hidrólisis , Poliésteres , Temperatura
20.
Blood Purif ; 51(10): 857-865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35016172

RESUMEN

INTRODUCTION: Cytokine storm control is the main target for improving severe COVID-19 by using immunosuppressive treatment. Effective renal replacement therapy (RRT) could give us an advantage removing cytokines in patients with RRT requirements superimposed on COVID-19. METHODS: This is a prospective observational study in COVID-19 patients who required hemodialysis (HD). Patients were assigned to online hemodiafiltration (OL-HDF) and expanded HD (HDx) according to Brescia group recommendations. We measured several cytokines, ß2 microglobulin and albumin levels pre/post-dialysis and on 1st-2nd week. We compared levels among both techniques and control group (HD without COVID-19). RESULTS: We included 26 patients: 18 with COVID-19 on RRT (5 of them had acute kidney injury [AKI]) and 8 controls. We confirm higher cytokine levels in COVID-19 patients than controls and even higher in patients with AKI than in those with chronic kidney disease. Most cytokines raised during HD session, except IL-10 and TNFα. IL-10 was eliminated by any dialysis technique, while clearance of TNFα was higher in the HDx group. HDx achieved a deeper normalization of cytokines and ß2 microglobulin reduction. Mortality was higher in the OL-HDF group than the HDx group. DISCUSSION: Not all cytokines behave equally along HD session. The following characteristics should be taken into account, such as intrinsic kinetic profile during a HD session. HDx seems to get better performance, probably due to the combination of different factors; however, we did not reach statistical significance due to the small sample size, dropout, and reduction of AKI incidence during the 2nd pandemic wave. CONCLUSION: HDx appears to provide better clearance for TNFα and ß2 microglobulin during HD session and associates lower mortality. We propose the HDx technique for COVID-19 patients with RRT requirements since it seems to be safe and more effective than OL-HDF. Further studies are still needed, but we hope that our preliminary data may help us in future pandemic waves of SARS-CoV-2 or other viruses still to come.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Hemodiafiltración , Fallo Renal Crónico , Lesión Renal Aguda/terapia , Albúminas , COVID-19/terapia , Hemodiafiltración/métodos , Humanos , Interleucina-10 , Fallo Renal Crónico/terapia , Diálisis Renal/métodos , SARS-CoV-2 , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA