Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Sci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923173

RESUMEN

Our study highlights the discovery of recurrent copy number alterations in noncoding regions, specifically blood enhancer cluster (BENC-CNA), in B-precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. We demonstrate that BENC-CNA acts as a super-enhancer, driving MYC expression and possibly contributing to the immortalization and proliferative advantage of BCP-ALL cells in vitro.

2.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38315834

RESUMEN

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Asunto(s)
Anemia , Bazo , Ratones , Animales , Bazo/metabolismo , Eritroblastos/metabolismo , Anemia/etiología , Anemia/metabolismo , Eritropoyesis/fisiología , Macrófagos/metabolismo
3.
Nat Commun ; 15(1): 6810, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122682

RESUMEN

Multiple myeloma is a hematological malignancy arising from immunoglobulin-secreting plasma cells. It remains poorly understood how chromatin rewiring of regulatory elements contributes to tumorigenesis and therapy resistance in myeloma. Here we generate a high-resolution contact map of myeloma-associated super-enhancers by integrating H3K27ac ChIP-seq and HiChIP from myeloma cell lines, patient-derived myeloma cells and normal plasma cells. Our comprehensive transcriptomic and phenomic analyses prioritize candidate genes with biological and clinical implications in myeloma. We show that myeloma cells frequently acquire SE that transcriptionally activate an oncogene PPP1R15B, which encodes a regulatory subunit of the holophosphatase complex that dephosphorylates translation initiation factor eIF2α. Epigenetic silencing or knockdown of PPP1R15B activates pro-apoptotic eIF2α-ATF4-CHOP pathway, while inhibiting protein synthesis and immunoglobulin production. Pharmacological inhibition of PPP1R15B using Raphin1 potentiates the anti-myeloma effect of bortezomib. Our study reveals that myeloma cells are vulnerable to perturbation of PPP1R15B-dependent protein homeostasis, highlighting a promising therapeutic strategy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple , Proteína Fosfatasa 1 , Proteostasis , Súper Potenciadores , Factor de Transcripción CHOP , Animales , Humanos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Bortezomib/farmacología , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Súper Potenciadores/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
4.
Leukemia ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969731

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy arising from immature thymocytes. Unlike well-known oncogenic transcription factors, such as NOTCH1 and MYC, the involvement of chromatin remodeling factors in T-ALL pathogenesis is poorly understood. Here, we provide compelling evidence on how SWI/SNF chromatin remodeling complex contributes to human T-ALL pathogenesis. Integrative analysis of transcriptomic and ATAC-Seq datasets revealed high expression of SMARCA4, one of the subunits of the SWI/SNF complex, in T-ALL patient samples and cell lines compared to normal T cells. Loss of SMARCA protein function resulted in apoptosis induction and growth inhibition in multiple T-ALL cell lines. ATAC-Seq analysis revealed a massive reduction in chromatin accessibility across the genome after the loss of SMARCA protein function. RUNX1 interacts with SMARCA4 protein and co-occupies the same genomic regions. Importantly, the NOTCH1-MYC pathway was primarily affected when SMARCA protein function was impaired, implicating SWI/SNF as a novel therapeutic target.

5.
Leukemia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987275

RESUMEN

Selinexor, a first-in-class exportin1 (XPO1) inhibitor, is an attractive anti-tumor agent because of its unique mechanisms of action; however, its dose-dependent toxicity and lack of biomarkers preclude its wide use in clinical applications. To identify key molecules/pathways regulating selinexor sensitivity, we performed genome-wide CRISPR/Cas9 dropout screens using two B-ALL lines. We identified, for the first time, that paralogous DDX19A and DDX19B RNA helicases modulate selinexor sensitivity by regulating MCL1 mRNA nuclear export. While single depletion of either DDX19A or DDX19B barely altered MCL1 protein levels, depletion of both significantly attenuated MCL1 mRNA nuclear export, reducing MCL1 protein levels. Importantly, combining selinexor treatment with depletion of either DDX19A or DDX19B markedly induced intrinsic apoptosis of leukemia cells, an effect rescued by MCL1 overexpression. Analysis of Depmap datasets indicated that a subset of T-ALL lines expresses minimal DDX19B mRNA levels. Moreover, we found that either selinexor treatment or DDX19A depletion effectively induced apoptosis of T-ALL lines expressing low DDX19B levels. We conclude that XPO1 and DDX19A/B coordinately regulate cellular MCL1 levels and propose that DDX19A/B could serve as biomarkers for selinexor treatment. Moreover, pharmacological targeting of DDX19 paralogs may represent a potential strategy to induce intrinsic apoptosis in leukemia cells.

6.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618957

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Tirosina Quinasas , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Factor de Transcripción STAT5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA