Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Chemistry ; : e202401731, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700114

RESUMEN

Vibrational circular dichroism (VCD) spectra of chiral high-spin organic radicals are expected to show a strong intensity enhancement and are thought to be difficult to predict using state-of-the-art theoretical methods. Herein we show that the chiral triplet nitrene obtained from photochemical cleavage of N2 from enantiopure 2-azido-9H-fluorenol does not feature extraordinarily strong intensities and that the experimental spectra match nicely with calculated ones. Thereby, this study demonstrates the general feasibility of studies on chiral high-spin organics by matrix-isolation VCD.

2.
Faraday Discuss ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766758

RESUMEN

The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

3.
Phys Chem Chem Phys ; 26(26): 18256-18265, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904382

RESUMEN

Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.

4.
Phys Chem Chem Phys ; 26(26): 18321-18332, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912536

RESUMEN

The biphenyl molecule (C12H10) acts as a fundamental molecular backbone in the stereoselective synthesis of organic materials due to its inherent twist angle causing atropisomerism in substituted derivatives and in molecular mass growth processes in circumstellar environments and combustion systems. Here, we reveal an unconventional low-temperature phenylethynyl addition-cyclization-aromatization mechanism for the gas-phase preparation of biphenyl (C12H10) along with ortho-, meta-, and para-substituted methylbiphenyl (C13H12) derivatives through crossed molecular beams and computational studies providing compelling evidence on their formation via bimolecular gas-phase reactions of phenylethynyl radicals (C6H5CC, X2A1) with 1,3-butadiene-d6 (C4D6), isoprene (CH2C(CH3)CHCH2), and 1,3-pentadiene (CH2CHCHCHCH3). The dynamics involve de-facto barrierless phenylethynyl radical additions via submerged barriers followed by facile cyclization and hydrogen shift prior to hydrogen atom emission and aromatization to racemic mixtures (ortho, meta) of biphenyls in overall exoergic reactions. These findings not only challenge our current perception of biphenyls as high temperature markers in combustion systems and astrophysical environments, but also identify biphenyls as fundamental building blocks of complex polycyclic aromatic hydrocarbons (PAHs) such as coronene (C24H12) eventually leading to carbonaceous nanoparticles (soot, grains) in combustion systems and in deep space thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

5.
J Am Chem Soc ; 145(21): 11544-11552, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37207364

RESUMEN

A novel surface-confined C-C coupling reaction involving two carbene molecules and a water molecule was studied by scanning tunneling microscopy in real space. Carbene fluorenylidene was generated from diazofluorene in the presence of water on a silver surface. While in the absence of water, fluorenylidene covalently binds to the surface to form a surface metal carbene, and water can effectively compete with the silver surface in reacting with the carbene. Water molecules in direct contact with fluorenylidene protonate the carbene to form the fluorenyl cation before the carbene can bind to the surface. In contrast, the surface metal carbene does not react with water. The fluorenyl cation is highly electrophilic and draws electrons from the metal surface to generate the fluorenyl radical which is mobile on the surface at cryogenic temperatures. The final step in this reaction sequence is the reaction of the radical with a remaining fluorenylidene molecule or with diazofluorene to produce the C-C coupling product. Both a water molecule and the metal surface are essential for the consecutive proton and electron transfer followed by C-C coupling. This C-C coupling reaction is unprecedented in solution chemistry.

6.
Acc Chem Res ; 55(16): 2180-2190, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35730754

RESUMEN

A decisive factor for obtaining high yields and selectivities in organic synthesis is the choice of the proper solvent. Solvent selection is often guided by the intuitive understanding of transition state-solvent interactions. However, quantum-mechanical tunneling can significantly contribute to chemical reactions, circumventing the transition state and thus depriving chemists of their intuitive handle on the reaction kinetics. In this Account, we aim to provide rationales for the effects of solvation on tunneling reactions derived from experiments performed in cryogenic matrices.The tunneling reactions analyzed here cover a broad range of prototypical organic transformations that are subject to strong solvation effects. Examples are the hydrogen tunneling probability for the cis-trans isomerization of formic acid which is strongly reduced upon formation of hydrogen-bonded complexes and the [1,2]H-shift in methylhydroxycarbene where a change in product selectivity is predicted upon interaction with hydrogen bond acceptors.Not only hydrogen but also heavy atom tunneling can exhibit strong solvent effects. The direction of the nearly degenerate valence tautomerization between benzene oxide and oxepin was found to reverse upon formation of a halogen or hydrogen bond with ICF3 or H2O. But even in the absence of strong noncovalent interactions such as hydrogen or halogen bonding, solvation can have a decisive effect on tunneling as evidenced by the Cope rearrangement of semibullvalenes via heavy-atom tunneling. Can quantum tunneling be catalyzed? The acceleration of the ring expansion of 1H-bicyclo[3.1.0.]-hexa-3,5-dien-2-one by complexation with Lewis acids provides a proof-of-concept for tunneling catalysis.Two concepts are central for the explanation and prediction of solvation effects on tunneling phenomena: a simple approach expands the Born-Oppenheimer approximation by separating nuclear degrees of freedom into intra- and intermolecular degrees. Intermolecular movements represent the slowest motions within molecular aggregates, thus effectively freezing the position of the solvent in relation to the reactant during the tunneling process. Another useful approach is to treat reactants and products by separate single-well potentials, where the intersection represents the transition state. Thus, stabilization of the reactants via solvation should result in an increase in barrier heights and widths which in turn lowers tunneling probabilities. These simple models can predict trends in tunneling kinetics and provide a rational basis for controlling tunneling reactions via solvation.


Asunto(s)
Halógenos , Hidrógeno , Hidrógeno/química , Enlace de Hidrógeno , Cinética , Solventes/química
7.
J Org Chem ; 88(13): 7893-7900, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37204141

RESUMEN

The photolysis of 2-azidofluorene in solid argon at 3 K results in the formation of 2-fluorenylnitrene. The nitrene undergoes subsequent rearrangements to two isomeric didehydroazepines (ketenimines) which differ in the position of the N atom in the seven-membered ring. The rearrangement of the nitrene to the didehydroazepines proceeds in a two-step process. The first step is a photochemical rearrangement to form the corresponding isomeric benzazirines A and B. The second step is the opening of the three-membered rings of A and B to form the isomeric didehydroazepines. While benzazirine A could easily be detected, isomer B was not observed, despite the corresponding didehydroazepine being formed in the matrix. Further experiments revealed that A rearranges to the didehydroazepine via heavy-atom tunneling. Semiquantitative estimations based on DFT calculations confirm that A should undergo a tunneling rearrangement with tunneling rates on the order of the experimentally observed rates. In contrast, estimations for B suggest that for this isomer the tunneling rates should be much larger, resulting in lifetimes too short to be observable under the conditions of matrix isolation. These experiments demonstrate the influence of position isomerism on quantum tunneling rates.


Asunto(s)
Iminas , Isomerismo , Fotólisis
8.
Phys Chem Chem Phys ; 25(45): 31146-31152, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947458

RESUMEN

2-Cyanoindene has recently been identified in the interstellar medium, however current models cannot fully account for its formation pathways. Herein, we identify and characterize 2-naphthylnitrene, which is prone to rearrange to 2- and 3-cyanoindene, in the gas phase using photoion mass-selective threshold photoelectron spectroscopy (ms-TPES). The adiabatic ionization energies (AIE) of triplet nitrene (3A'') to the radical cation in its lowest-energy doublet X̃+(2A') and quartet ã+(4A') electronic states were determined to be 7.72 ± 0.02 and 8.64 ± 0.02 eV, respectively, leading to a doublet-quartet energy splitting (ΔED-Q) of 0.92 eV (88.8 kJ mol-1). A ring-contraction mechanism yields 3-cyanoindene, which is selectively formed under mild pyrolysis conditions (800 K), while the lowest-energy isomer, 2-cyanoindene, is also observed under harsh pyrolysis conditions at 1100 K. The isomer-selective assignment was rationalized by Franck-Condon spectral modeling and by measuring the AIEs at 8.64 ± 0.02 and 8.70 ± 0.02 eV for 2- and 3-cyanoindene, respectively, in good agreement with quantum chemical calculations.

9.
J Phys Chem A ; 127(41): 8574-8583, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37734109

RESUMEN

The thermal decomposition of 2- and 4-iodobenzyl iodide at high temperatures was investigated by mass-selective threshold photoelectron spectroscopy (ms-TPES) in the gas phase, as well as by matrix isolation infrared spectroscopy in cryogenic matrices. Scission of the benzylic C-I bond in the precursors at 850 K affords 2- and 4-iodobenzyl radicals (ortho- and para-IC6H4CH2•), respectively, in high yields. The adiabatic ionization energies of ortho-IC6H4CH2• to the X̃+(1A') and ã+(3A') cation states were determined to be 7.31 ± 0.01 and 8.78 ± 0.01 eV, whereas those of para-IC6H4CH2• were measured to be 7.17 ± 0.01 eV for X̃+(1A1) and 8.98 ± 0.01 eV for ã+(3A1). Vibrational frequencies of the ring breathing mode were measured to be 560 ± 80 and 240 ± 80 cm-1 for the X̃+(1A') and ã+(3A') cation states of ortho-IC6H4CH2•, respectively. At higher temperatures, subsequent aryl C-I cleavage takes place to form α,2- and α,4-didehydrotoluene diradicals, which rapidly undergo ring contraction to a stable product, fulvenallene. Nevertheless, the most intense vibrational bands of the elusive α,2- and α,4-didehydrotoluene diradicals were observed in the Ar matrices. In addition, high-energy and astrochemically relevant C7H6 isomers 1-, 2-, and 5-ethynylcyclopentadiene are observed at even higher pyrolysis temperatures along with fulvenallene. Complementary quantum chemical computations on the C7H6 potential energy surface predict a feasible reaction cascade at high temperatures from the diradicals to fulvenallene, supporting the experimental observations in both the gas phase and cryogenic matrices.

10.
J Phys Chem A ; 127(27): 5723-5733, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37401904

RESUMEN

The bimolecular gas-phase reactions of the phenylethynyl radical (C6H5CC, X2A1) with allene (H2CCCH2), allene-d4 (D2CCCD2), and methylacetylene (CH3CCH) were studied under single-collision conditions utilizing the crossed molecular beams technique and merged with electronic structure and statistical calculations. The phenylethynyl radical was found to add without an entrance barrier to the C1 carbon of the allene and methylacetylene reactants, resulting in doublet C11H9 collision complexes with lifetimes longer than their rotational periods. These intermediates underwent unimolecular decomposition via atomic hydrogen loss through tight exit transition states in facile radical addition─hydrogen atom elimination mechanisms forming predominantly 3,4-pentadien-1-yn-1-ylbenzene (C6H5CCCHCCH2) and 1-phenyl-1,3-pentadiyne (C6H5CCCCCH3) in overall exoergic reactions (-110 kJ mol-1 and -130 kJ mol-1) for the phenylethynyl-allene and phenylethynyl-methylacetylene systems, respectively. These barrierless reaction mechanisms mirror those of the ethynyl radical (C2H, X2Σ+) with allene and methylacetylene forming predominantly ethynylallene (HCCCHCCH2) and methyldiacetylene (HCCCCCH3), respectively, suggesting that in the aforementioned reactions the phenyl group acts as a spectator. These molecular mass growth processes are accessible in low-temperature environments such as cold molecular clouds (TMC-1) or Saturn's moon Titan, efficiently incorporating a benzene ring into unsaturated hydrocarbons.

11.
Angew Chem Int Ed Engl ; 62(44): e202309717, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698374

RESUMEN

Heavy-atom tunneling limits the lifetime and observability of bicyclo[4.1.0]hepta-2,4,6-triene, a key intermediate in the rearrangement of phenylcarbene. Bicyclo[4.1.0]hepta-2,4,6-triene had been proposed as the primary intermediate of the rearrangement of phenylcarbene, but despite many efforts evaded its characterization even in cryogenic matrices. By introducing fluorine substituents into the ortho-positions of the phenyl ring of phenylcarbene, the highly strained cyclopropene 1,5-difluorobicyclo[4.1.0]hepta-2,4,6-triene becomes stable enough to be characterized in argon matrices. However, even at 3 K this cyclopropene is only metastable and rearranges via heavy-atom tunneling to the corresponding cycloheptatetraene. Calculations suggest that fluorination is necessary to slow down the tunneling rearrangement of the bicycloheptatriene. The parent bicycloheptatriene rapidly rearranges via heavy-atom tunneling and therefore cannot be detected under matrix isolation conditions.

12.
Magn Reson Chem ; 60(8): 829-835, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35319115

RESUMEN

The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter DS = -0.1031 cm-1 among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing.


Asunto(s)
Teoría Cuántica , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fotólisis , Polvos
13.
Angew Chem Int Ed Engl ; 61(43): e202212245, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36056533

RESUMEN

Chirality switching of self-assembled molecular structures is of potential interest for designing functional materials but is restricted by the strong interaction between the embedded molecules. Here, we report on an unusual approach based on reversible chirality changes of self-assembled oligomers using variable-temperature scanning tunneling microscopy supported by quantum mechanical calculations. Six functionalized diazomethanes each self-assemble into chiral wheel-shaped oligomers on Ag(111). At 130 K, a temperature far lower than expected, the oligomers change their chirality even though the molecules reside in an embedded self-assembled structure. Each chirality change is accompanied by a slight center-of-mass shift. We show how the identical activation energies of the two processes result from the interplay of the chirality change with surface diffusion, findings that open the possibility of implementing various functional materials from self-assembled supramolecular structures.

14.
J Am Chem Soc ; 143(33): 13156-13166, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387472

RESUMEN

Solvation is a complex phenomenon involving electrostatic and van der Waals forces as well as chemically more specific effects such as hydrogen bonding. To disentangle global solvent effects (macrosolvation) from local solvent effects (microsolvation), we studied the UV-vis and IR spectra of a solvatochromic pyridinium-N-phenolate dye (a derivative of Reichardt's dye) in rare gas matrices, in mixtures of argon and water, and in water ice. The π-π* transition of the betaine dye in the visible region and its C-O stretching vibration in the IR region are highly sensitive to solvent effects. By annealing argon matrices of the betaine dye doped with low concentrations of water, we were able to synthesize 1:1 water-dye complexes. Formation of hydrogen-bonded complexes leads to small shifts of the π-π* transition only, as long as the global polarity of the matrix environment does not change. In contrast, changes of the global polarity result in large spectral band shifts. Hydrogen-bonded complexes of the betaine dye are more sensitive to global polarity changes than the dye itself, explaining why ET values determined with Reichardt's dyes are very different for protic and nonprotic solvents, even if the relative permittivities of these solvents are similar.

15.
J Am Chem Soc ; 143(12): 4653-4660, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33599124

RESUMEN

Metal carbenes are key intermediates in a plethora of homogeneous and heterogeneous catalytic processes. However, despite their importance to heterogeneous catalysis, the influence of surface attachment on carbene reactivity has not yet been explored. Here, we reveal the interactions of fluorenylidene (FY), an archetypical aromatic carbene of extreme reactivity, with a Ag(111) surface. For the first time, the interaction of a highly reactive carbene with a metal surface could be studied by scanning tunneling microscopy (STM). FY chemisorbs on Ag(111) with an estimated desorption energy of 3 eV, forming a surface bound silver-carbene complex. The surface interaction leads to a switching of the electronic ground state of FY from triplet to singlet, and to controlled chemical reactivity. This atomistic understanding of the interplay between carbenes and metal surfaces opens the way for the development of novel classes of catalytic systems based on surface metal carbenes.

16.
Chemistry ; 27(4): 1258-1269, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32578914

RESUMEN

Among all C-, N-, and O-centered polyradicals, high-spin nitrenes possess the largest magnetic anisotropy and are of considerable interest as multi-level molecular spin systems for exploration of organic molecular magnetism and quantum information processing. Although the first representatives of quintet and septet nitrenes were obtained almost 50 years ago, the experimental and theoretical studies of these highly reactive species became possible only recently, owing to new achievements in molecular spectroscopy and computational chemistry. Meanwhile, dozens of various quintet dinitrenes and septet trinitrenes were successfully characterized by IR, UV/Vis, and EPR spectroscopy, thus providing important information about the electronic structure, magnetic properties and reactivity of these compounds.

17.
Chemistry ; 27(71): 17873-17879, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34346532

RESUMEN

o-Tolylmethylene 1 is a metastable triplet carbene that rearranges to o-xylylene 2 even at temperatures as low as 2.7 K via [1,4] H atom tunneling. Electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopical techniques were used to identify two conformers of 1 (anti and syn) in noble gas matrices and in frozen organic solutions. Conformer-specific kinetic measurements revealed that the rate constants for the rearrangements of the anti and syn conformers of 1 are very similar. However, the orbital alignment in the syn conformer is less favorable for the hydrogen transfer reaction than the orbital configuration in the anti conformer. Our spectroscopic and quantum chemical investigations indicate that anti 1 and syn 1 rapidly interconvert via efficient quantum tunneling forming a rotational pre-equilibrium. The subsequent second tunneling reaction, the [1,4] H migration from anti 1 to 2, is rate-limiting for the formation of 2. We here present an efficient strategy for the study of such tunneling equilibria.


Asunto(s)
Hidrógeno , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Temperatura
18.
Chemistry ; 26(46): 10366, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32776594

RESUMEN

Invited for the cover of this issue are the groups of Elsa Sanchez-Garcia and Wolfram Sander at the Universität Duisburg-Essen and the Ruhr-Universität Bochum. The image depicts the ideas skillfully visualized by Markus Henkel on the shift in equilibrium induced by isotopic labelling. Read the full text of the article at 10.1002/chem.202001202.

19.
Chemistry ; 26(46): 10452-10458, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32293763

RESUMEN

The Cope rearrangement of selectively deuterated isotopomers of 1,5-dimethylsemibullvalene 2 a and 3,7-dicyano-1,5-dimethylsemibullvalene 2 b were studied in cryogenic matrices. In both semibullvalenes the Cope rearrangement is governed by heavy-atom tunneling. The driving force for the rearrangements is the small difference in the zero-point vibrational energies of the isotopomers. To evaluate the effect of the driving force on the tunneling probability in 2 a and 2 b, two different pairs of isotopomers were studied for each of the semibullvalenes. The reaction rates for the rearrangement of 2 b in cryogenic matrices were found to be smaller than the ones of 2 a under similar conditions, whereas differences in the driving force do not influence the rates. Small curvature tunneling (SCT) calculations suggest that the reduced tunneling rate of 2 b compared to that of 2 a results from a change in the shape of the potential energy barrier. The tunneling probability of the semibullvalenes strongly depends on the matrix environment; however, for 2 a in a qualitatively different way than for 2 b.

20.
J Phys Chem A ; 124(19): 3836-3843, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32208698

RESUMEN

The photoionization of phenylnitrene was investigated by photoion mass-selected threshold photoelectron spectroscopy in the gas phase. Flash vacuum pyrolysis of phenyl azide at 480 °C produces the nitrene, which subsequently rearranges at higher temperatures affording three isomeric cyanocyclopentadienes, in contrast to low-temperature trapping experiments. Temperature control of the reactor and threshold photoelectron spectra allows for optimizing the generation of phenylnitrene or its thermal rearrangement products, as well as obtaining vibrational information for the corresponding ions. The adiabatic ionization energies (AIE) of the triplet nitrene (3A2) to the radical cation in its lowest-energy doublet (2B2) and quartet (4A1) spin states were determined to 8.29 ± 0.01 and 9.73 ± 0.01 eV, respectively. Vibrational frequencies of ring breathing modes were measured at 500 ± 80 and 484 ± 80 cm-1 for both the [Formula: see text](2B2) and [Formula: see text](4A1) cationic states, respectively. The AIE differ from the values previously reported; hence, we revise the doublet-quartet energy splitting of the phenylnitrene radical cation to 1.44 eV, in excellent agreement with composite methods and coupled cluster calculations, but considerably higher than the literature reference (1.1 eV).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA