Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Bacteriol ; 206(4): e0033023, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38470036

RESUMEN

Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in Bacteria. SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL). Deletions and insertions into the IDL are well tolerated with few phenotypes, although the largest deletions and insertions exhibit some sensitivity to DNA-damaging agents. To define specific DNA metabolism processes dependent on IDL length, ssb mutants that lack 16, 26, 37, or 47 residues of the 57-residue IDL were tested for synthetic phenotypes with mutations in DNA replication restart or recombination genes. We also tested the impact of integrating a fluorescent domain within the SSB IDL using an ssb::mTur2 insertion mutation. Only the largest deletion tested or the insertion mutation causes sensitivity in any of the pathways. Mutations in two replication restart pathways (PriA-B1 and PriA-C) showed synthetic lethalities or small colony phenotypes with the largest deletion or insertion mutations. Recombination gene mutations del(recBCD) and del(ruvABC) show synthetic phenotypes only when combined with the largest ssb deletion. These results suggest that a minimum IDL length is important in some genome maintenance reactions in Escherichia coli. These include pathways involving PriA-PriB1, PriA-PriC, RecFOR, and RecG. The mTur2 insertion in the IDL may also affect SSB interactions in some processes, particularly the PriA-PriB1 and PriA-PriC replication restart pathways.IMPORTANCEssb is essential in Escherichia coli due to its roles in protecting ssDNA and coordinating genome maintenance events. While the DNA-binding core and acidic tip have well-characterized functions, the purpose of the intrinsically disordered linker (IDL) is poorly understood. In vitro studies have revealed that the IDL is important for cooperative ssDNA binding and phase separation. However, single-stranded (ss) DNA-binding protein (SSB) variants with large deletions and insertions in the IDL support normal cell growth. We find that the PriA-PriB1 and PriA-C replication restart, as well as the RecFOR- and RecG-dependent recombination, pathways are sensitive to IDL length. This suggests that cooperativity, phase separation, or a longer spacer between the core and acidic tip of SSB may be important for specific cellular functions.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Replicación del ADN , ADN/metabolismo , ADN de Cadena Simple/metabolismo , Recombinación Genética
2.
J Bacteriol ; 204(5): e0008122, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35442066

RESUMEN

In Escherichia coli K-12, RecA binds to single-strand DNA (ssDNA) created by DNA damage to form a protein-DNA helical filament that serves to catalyze LexA autoproteolysis, which induces the SOS response. The SOS constitutive (SOSC) mutations recA730(E38K) and recA1202(Q184K) are both on the outside of the RecA filament, opposite to the face that binds DNA. recA730(E38K) is also able to suppress the UV sensitivity caused by recF mutations. Both SOSC expression and recF suppression are thought to be due to RecA730's ability to compete better for ssDNA coated with ssDNA-binding protein than the wild type. We tested whether other positively charged residues at these two positions would lead to SOSC expression and recF suppression. We found that 5/6 positively charged residues were SOSC and 4/5 of these were also recF suppressors. While other mutations at these two positions (and others) were recF suppressors, none were SOSC. Three recF suppressors could be made moderately SOSC by adding a recA operator mutation. We hypothesize two mechanisms for SOSC expression: the first suggests that the positive charge at positions 38 and 184 attract negatively charged molecules that block interactions that would destabilize the RecA-DNA filament, and the second involves more stable filaments caused by increases in mutant RecA concentration. IMPORTANCE In Escherichia coli K-12, SOS constitutive (SOSC) mutants of recA turn on the SOS response in the absence of DNA damage. Some SOSC mutants are also able to indirectly suppress the UV sensitivity of recF mutations. Two SOSC mutations, recA730(E38K) and recA1202(Q184K), define a surface on the RecA-DNA filament opposite the surface that binds DNA. Both introduce positive charges, and recA730 is a recF suppressor. We tested whether the positive charge at these two positions was required for SOSC expression and recF suppression. We found a high correlation between the positive charge, SOSC expression and recF suppression. We also found several other mutations (different types) that provide recF suppression but no SOSC expression.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , ADN de Cadena Simple/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Fenotipo , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Respuesta SOS en Genética
3.
Mol Microbiol ; 116(4): 1140-1150, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34423481

RESUMEN

In Escherichia coli, PriA, PriB, PriC, and DnaT proteins mediate three pathways for Replication Restart called PriA-PriB, PriA-PriC, and PriC. PriA is crucial for two of the three pathways. Its absence leads to slow growth, high basal levels of SOS expression, poorly partitioning nucleoids, UV sensitivity, and recombination deficiency. PriA has ATPase and helicase activities and interacts with PriB, DnaT, and single-stranded DNA-binding protein (SSB). priA300 (K230R) and priA301 (C479Y) have no phenotype as single mutants, but each phenocopy a priA-null mutant combined with ∆priB. This suggested that the two priA mutations affected the helicase activity that is required for the PriA-PriC pathway. To further test this, the biochemical activities of purified PriA300 and PriA301 were examined. As expected, PriA300 lacks ATPase and helicase activities but retains the ability to interact with PriB. PriA301, however, retains significant PriB-stimulated helicase activity even though PriA301 interactions with PriB and DNA are weakened. A PriA300,301 variant retains only the ability to interact with DNA in vitro and phenocopies the priA-null phenotype in vivo. This suggests that there are two biochemically and genetically distinct PriA-PriB pathways. One uses PriB-stimulated helicase activity to free a region of ssDNA and the other uses helicase-independent remodeling activity.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano , Proteínas de Unión al ADN/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutación
4.
Nucleic Acids Res ; 48(11): 6053-6067, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32374866

RESUMEN

Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.


Asunto(s)
Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Fluorescencia , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/química , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Respuesta SOS en Genética
5.
Mol Microbiol ; 114(3): 495-509, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32426857

RESUMEN

DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Ribonucleasa H/metabolismo , Reparación del ADN , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Mutación , Estructuras R-Loop/genética , Imagen Individual de Molécula
6.
Proc Natl Acad Sci U S A ; 115(39): E9075-E9084, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201718

RESUMEN

DNA replication restart, the essential process that reinitiates prematurely terminated genome replication reactions, relies on exquisitely specific recognition of abandoned DNA replication-fork structures. The PriA DNA helicase mediates this process in bacteria through mechanisms that remain poorly defined. We report the crystal structure of a PriA/replication-fork complex, which resolves leading-strand duplex DNA bound to the protein. Interaction with PriA unpairs one end of the DNA and sequesters the 3'-most nucleotide from the nascent leading strand into a conserved protein pocket. Cross-linking studies reveal a surface on the winged-helix domain of PriA that binds to parental duplex DNA. Deleting the winged-helix domain alters PriA's structure-specific DNA unwinding properties and impairs its activity in vivo. Our observations lead to a model in which coordinated parental-, leading-, and lagging-strand DNA binding provide PriA with the structural specificity needed to act on abandoned DNA replication forks.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Biológicos , Cristalografía por Rayos X , Dominios Proteicos , Estructura Secundaria de Proteína , Relación Estructura-Actividad
7.
J Bacteriol ; 202(23)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32900829

RESUMEN

Escherichia coli PriA and PriC recognize abandoned replication forks and direct reloading of the DnaB replicative helicase onto the lagging-strand template coated with single-stranded DNA-binding protein (SSB). Both PriA and PriC have been shown by biochemical and structural studies to physically interact with the C terminus of SSB. In vitro, these interactions trigger remodeling of the SSB on ssDNA. priA341(R697A) and priC351(R155A) negated the SSB remodeling reaction in vitro Plasmid-carried priC351(R155A) did not complement priC303::kan, and priA341(R697A) has not yet been tested for complementation. Here, we further studied the SSB-binding pockets of PriA and PriC by placing priA341(R697A), priA344(R697E), priA345(Q701E), and priC351(R155A) on the chromosome and characterizing the mutant strains. All three priA mutants behaved like the wild type. In a ΔpriB strain, the mutations caused modest increases in SOS expression, cell size, and defects in nucleoid partitioning (Par-). Overproduction of SSB partially suppressed these phenotypes for priA341(R697A) and priA344(R697E). The priC351(R155A) mutant behaved as expected: there was no phenotype in a single mutant, and there were severe growth defects when this mutation was combined with ΔpriB Analysis of the priBC mutant revealed two populations of cells: those with wild-type phenotypes and those that were extremely filamentous and Par- and had high SOS expression. We conclude that in vivo, priC351(R155A) identified an essential residue and function for PriC, that PriA R697 and Q701 are important only in the absence of PriB, and that this region of the protein may have a complicated relationship with SSB.IMPORTANCEEscherichia coli PriA and PriC recruit the replication machinery to a collapsed replication fork after it is repaired and needs to be restarted. In vitro studies suggest that the C terminus of SSB interacts with certain residues in PriA and PriC to recruit those proteins to the repaired fork, where they help remodel it for restart. Here, we placed those mutations on the chromosome and tested the effect of mutating these residues in vivo The priC mutation completely abolished function. The priA mutations had no effect by themselves. They did, however, display modest phenotypes in a priB-null strain. These phenotypes were partially suppressed by SSB overproduction. These studies give us further insight into the reactions needed for replication restart.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Secuencias de Aminoácidos , ADN Helicasas/genética , Análisis Mutacional de ADN , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenotipo , Unión Proteica
8.
J Biol Chem ; 294(8): 2801-2814, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593500

RESUMEN

DNA helicases are motor proteins that couple the chemical energy of nucleoside triphosphate hydrolysis to the mechanical functions required for DNA unwinding. Studies of several helicases have identified strand-separating "pin" structures that are positioned to intercept incoming dsDNA and promote strand separation during helicase translocation. However, pin structures vary among helicases and it remains unclear whether they confer a conserved unwinding mechanism. Here, we tested the biochemical and cellular roles of a putative pin element within the Escherichia coli PriA DNA helicase. PriA orchestrates replication restart in bacteria by unwinding the lagging-strand arm of abandoned DNA replication forks and reloading the replicative helicase with the help of protein partners that combine with PriA to form what is referred to as a primosome complex. Using in vitro protein-DNA cross-linking, we localized the putative pin (a ß-hairpin within a zinc-binding domain in PriA) near the ssDNA-dsDNA junction of the lagging strand in a PriA-DNA replication fork complex. Removal of residues at the tip of the ß-hairpin eliminated PriA DNA unwinding, interaction with the primosome protein PriB, and cellular function. We isolated a spontaneous intragenic suppressor mutant of the priA ß-hairpin deletion mutant in which 22 codons around the deletion site were duplicated. This suppressor variant and an Ala-substituted ß-hairpin PriA variant displayed wildtype levels of DNA unwinding and PriB binding in vitro These results suggest essential but sequence nonspecific roles for the PriA pin element and coupling of PriA DNA unwinding to its interaction with PriB.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN Helicasas/química , ADN Helicasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformación de Ácido Nucleico , Conformación Proteica
9.
Mol Microbiol ; 111(2): 405-422, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30422330

RESUMEN

In Escherichia coli, after DNA damage, the SOS response increases the transcription (and protein levels) of approximately 50 genes. As DNA repair ensues, the level of transcription returns to homeostatic levels. ClpXP and other proteases return the high levels of several SOS proteins to homeostasis. When all SOS genes are constitutively expressed and many SOS proteins are stabilized by the removal of ClpXP, microscopic analysis shows that cells filament, produce mini-cells and have branching protrusions along their length. The only SOS gene required (of 19 tested) for the cell length phenotype is recN. RecN is a member of the Structural Maintenance of Chromosome (SMC) class of proteins. It can hold pieces of DNA together and is important for double-strand break repair (DSBR). RecN is degraded by ClpXP. Overexpression of recN+ in the absence of ClpXP or recN4174 (A552S, A553V), a mutant not recognized by ClpXP, produce filamentous cells with nucleoid partitioning defects. It is hypothesized that when produced at high levels during the SOS response, RecN interferes with nucleoid partitioning and Z-Ring function by holding together sections of the nucleoid, or sister nucleoids, providing another way to inhibit cell division.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Enzimas de Restricción del ADN/metabolismo , Escherichia coli/citología , Escherichia coli/fisiología , Péptido Hidrolasas/deficiencia , Respuesta SOS en Genética , Microscopía , Fenotipo
10.
Proc Natl Acad Sci U S A ; 113(19): 5400-5, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114527

RESUMEN

Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metabolismo de los Lípidos/fisiología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/ultraestructura , Proteínas de la Membrana/metabolismo , Mycobacterium/metabolismo , Mycobacterium/ultraestructura
11.
PLoS Genet ; 11(6): e1005278, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26047498

RESUMEN

The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism.


Asunto(s)
Conjugación Genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Evolución Molecular , Mutación Missense , Rec A Recombinasas/genética , Secuencia de Aminoácidos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica , Datos de Secuencia Molecular , Rec A Recombinasas/química , Rec A Recombinasas/metabolismo , Selección Genética
12.
J Bacteriol ; 199(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28320884

RESUMEN

In bacteria, replication forks assembled at a replication origin travel to the terminus, often a few megabases away. They may encounter obstacles that trigger replisome disassembly, rendering replication restart from abandoned forks crucial for cell viability. During the past 25 years, the genes that encode replication restart proteins have been identified and genetically characterized. In parallel, the enzymes were purified and analyzed in vitro, where they can catalyze replication initiation in a sequence-independent manner from fork-like DNA structures. This work also revealed a close link between replication and homologous recombination, as replication restart from recombination intermediates is an essential step of DNA double-strand break repair in bacteria and, conversely, arrested replication forks can be acted upon by recombination proteins and converted into various recombination substrates. In this review, we summarize this intense period of research that led to the characterization of the ubiquitous replication restart protein PriA and its partners, to the definition of several replication restart pathways in vivo, and to the description of tight links between replication and homologous recombination, responsible for the importance of replication restart in the maintenance of genome stability.


Asunto(s)
Bacterias/metabolismo , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN Bacteriano/fisiología , Bacterias/genética , Mutación
13.
J Bacteriol ; 199(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28607160

RESUMEN

The ability to restart broken DNA replication forks is essential across all domains of life. In Escherichia coli, the priA, priB, priC, and dnaT genes encode the replication restart proteins (RRPs) to accomplish this task. PriA plays a critical role in replication restart such that its absence reveals a dramatic phenotype: poor growth, high basal levels of SOS expression, poorly partitioned nucleoids (Par-), UV sensitivity, and recombination deficiency (Rec-). PriA has 733 amino acids, and its structure is composed of six domains that enable it to bind to DNA replication fork-like structures, remodel the strands of DNA, interact with SSB (single-stranded DNA binding protein), PriB, and DnaT, and display ATPase, helicase, and translocase activities. We have characterized a new priA mutation called priA316::cat It is a composite mutation involving an insertion that truncates the protein within the winged-helix domain (at the 154th codon) and an ACG (Thr)-to-ATG (Met) mutation that allows reinitiation of translation at the 157th codon such that PriA is expressed in two pieces. priA316::cat phenotypes are like those of the wild type for growth, recombination, and UV resistance, revealing only a slightly increased level of SOS expression and defects in nucleoid partitioning in the mutant. Both parts of PriA are required for activity, and the N-terminal fragment can be optimized to yield wild-type activity. A deletion of the lon protease suppresses priA316::cat phenotypes. We hypothesize the two parts of PriA form a complex that supplies most of the PriA activity needed in the cell.IMPORTANCE PriA is a highly conserved multifunctional protein that plays a crucial role in the essential process of replication restart. Here we characterize an insertion mutation of priA with an intragenic suppressor such that it is now made in two parts. These two pieces split the winged-helix domain to separate the N-terminal 3' DNA-binding domain from the C-terminal domain of PriA. It is hypothesized that the two pieces form a complex that is capable of almost wild type priA function. The composite mutation leads to a moderate level of SOS expression and defects in partitioning of the chromosomes. Full function is restored by deletion of lon, suggesting that stability of this complex may be a reason for the partial phenotypes seen.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Escherichia coli K12/crecimiento & desarrollo , Mutagénesis Insercional , Recombinación Genética
14.
J Bacteriol ; 199(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28138101

RESUMEN

Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Geobacter/fisiología , Secuencia de Aminoácidos , Técnicas Bacteriológicas , Fuentes de Energía Bioeléctrica/microbiología , Medios de Cultivo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Geobacter/citología , Geobacter/genética , Geobacter/metabolismo , Glicerofosfatos/química , Procesamiento Proteico-Postraduccional
15.
J Biol Chem ; 291(35): 18384-96, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27382050

RESUMEN

Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks.


Asunto(s)
Proteínas Bacterianas/química , Cronobacter sakazakii/química , Proteínas de Unión al ADN/química , Proteínas Bacterianas/metabolismo , Cronobacter sakazakii/metabolismo , ADN Bacteriano/biosíntesis , ADN Bacteriano/química , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/química , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/química , AdnB Helicasas/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad
16.
Proc Natl Acad Sci U S A ; 111(4): 1373-8, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24379377

RESUMEN

Collisions between cellular DNA replication machinery (replisomes) and damaged DNA or immovable protein complexes can dissociate replisomes before the completion of replication. This potentially lethal problem is resolved by cellular "replication restart" reactions that recognize the structures of prematurely abandoned replication forks and mediate replisomal reloading. In bacteria, this essential activity is orchestrated by the PriA DNA helicase, which identifies replication forks via structure-specific DNA binding and interactions with fork-associated ssDNA-binding proteins (SSBs). However, the mechanisms by which PriA binds replication fork DNA and coordinates subsequent replication restart reactions have remained unclear due to the dearth of high-resolution structural information available for the protein. Here, we describe the crystal structures of full-length PriA and PriA bound to SSB. The structures reveal a modular arrangement for PriA in which several DNA-binding domains surround its helicase core in a manner that appears to be poised for binding to branched replication fork DNA structures while simultaneously allowing complex formation with SSB. PriA interaction with SSB is shown to modulate SSB/DNA complexes in a manner that exposes a potential replication initiation site. From these observations, a model emerges to explain how PriA links recognition of diverse replication forks to replication restart.


Asunto(s)
ADN Helicasas/química , Replicación del ADN , Proteínas de Escherichia coli/química , Cristalografía por Rayos X , ADN Helicasas/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación Proteica , Zinc/metabolismo
17.
EMBO J ; 30(20): 4236-47, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21857649

RESUMEN

Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa III/química , Replicación del ADN , ADN de Cadena Simple/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Polimerasa III/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Datos de Secuencia Molecular
18.
PLoS Genet ; 8(4): e1002642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511883

RESUMEN

Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5' flaps attached to the ends of the incoming Mu genome, followed by filling the remaining 5 bp gaps at each end of the Mu insertion. It is widely assumed that the gaps are repaired by a gap-filling host polymerase. Using the E. coli Keio Collection to screen for mutants defective in recovery of stable Mu insertions, we show in this study that the gaps are repaired by the machinery responsible for the repair of double-strand breaks in E. coli-the replication restart proteins PriA-DnaT and homologous recombination proteins RecABC. We discuss alternate models for recombinational repair of the Mu gaps.


Asunto(s)
Bacteriófago mu , Reparación del ADN , Elementos Transponibles de ADN/genética , Escherichia coli , Recombinación Homóloga/genética , Bacteriófago mu/genética , Bacteriófago mu/crecimiento & desarrollo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma , Mutagénesis Insercional , Mutación , Transposasas/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(40): E2649-56, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22984156

RESUMEN

Replicating bacterial chromosomes continuously demix from each other and segregate within a compact volume inside the cell called the nucleoid. Although many proteins involved in this process have been identified, the nature of the global forces that shape and segregate the chromosomes has remained unclear because of limited knowledge of the micromechanical properties of the chromosome. In this work, we demonstrate experimentally the fundamentally soft nature of the bacterial chromosome and the entropic forces that can compact it in a crowded intracellular environment. We developed a unique "micropiston" and measured the force-compression behavior of single Escherichia coli chromosomes in confinement. Our data show that forces on the order of 100 pN and free energies on the order of 10(5) k(B)T are sufficient to compress the chromosome to its in vivo size. For comparison, the pressure required to hold the chromosome at this size is a thousand-fold smaller than the surrounding turgor pressure inside the cell. Furthermore, by manipulation of molecular crowding conditions (entropic forces), we were able to observe in real time fast (approximately 10 s), abrupt, reversible, and repeatable compaction-decompaction cycles of individual chromosomes in confinement. In contrast, we observed much slower dissociation kinetics of a histone-like protein HU from the whole chromosome during its in vivo to in vitro transition. These results for the first time provide quantitative, experimental support for a physical model in which the bacterial chromosome behaves as a loaded entropic spring in vivo.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas Bacterianos/fisiología , Escherichia coli/genética , Pruebas de Dureza/instrumentación , Dureza/fisiología , Modelos Biológicos , Biofisica , Cromosomas Bacterianos/química , Entropía , Pruebas de Dureza/métodos , Presión , Factores de Tiempo
20.
J Biol Chem ; 288(24): 17569-78, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23629733

RESUMEN

Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sitios de Unión , Unión Competitiva , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , AdnB Helicasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Mapeo Peptídico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA