Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 22(1): 37, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36804872

RESUMEN

Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM  has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.


Asunto(s)
Calcio , Diabetes Mellitus , Cardiomiopatías Diabéticas , Exosomas , MicroARNs , Humanos , Cardiomiopatías Diabéticas/metabolismo , Exosomas/metabolismo , Inflamación/complicaciones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Calcio/metabolismo
2.
Cardiovasc Drugs Ther ; 33(1): 69-76, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30734207

RESUMEN

PURPOSE: This post-hoc analysis examined whether age modified the efficacy and safety of alirocumab, a PCSK9 inhibitor, in patients with heterozygous familial hypercholesterolemia (HeFH), using pooled data from four 78-week placebo-controlled phase 3 trials (ODYSSEY FH I, FH II, LONG TERM, and HIGH FH). METHODS: Data from 1257 patients with HeFH on maximally tolerated statin ± other lipid-lowering therapies were analyzed by an alirocumab dose regimen and by age subgroups (18 to < 45, 45 to < 55, 55 to < 65, and ≥ 65 years). In the FH I and II trials, patients received 75 mg subcutaneously every 2 weeks (Q2W), with dose increase to 150 mg Q2W at week 12 if week 8 low-density lipoprotein cholesterol (LDL-C) was ≥ 70 mg/dl. In HIGH FH and LONG TERM, patients received 150 mg alirocumab Q2W. RESULTS: Baseline characteristics were similar between treatment groups across all age groups; the proportion of males decreased whereas the proportion of patients with coronary heart disease, diabetes, hypertension, and declining renal function increased with increasing age. Mean LDL-C reductions at week 24 were consistent across age groups (50.6-61.0% and 51.1-65.8% vs. placebo for the 75/150 and 150 mg alirocumab dose regimens, respectively; both non-significant interaction P-values). Treatment-emergent adverse events occurred in similar frequency in alirocumab- and placebo-treated patients regardless of age, except for injection-site reactions, which were more common in alirocumab than placebo but declined in frequency with age. CONCLUSIONS: Alirocumab treatment resulted in significant LDL-C reductions at weeks 12 and 24 and was generally well tolerated in patients with HeFH across all age groups studied.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , LDL-Colesterol/sangre , Heterocigoto , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Inhibidores de PCSK9 , Adolescente , Adulto , Factores de Edad , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Anticolesterolemiantes/efectos adversos , Biomarcadores/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Ensayos Clínicos Fase III como Asunto , Regulación hacia Abajo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Masculino , Persona de Mediana Edad , Fenotipo , Proproteína Convertasa 9/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
3.
Circ Res ; 118(7): 1091-105, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838790

RESUMEN

RATIONALE: Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE: To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS: Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS: The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.


Asunto(s)
Células Madre Adultas/trasplante , Infarto del Miocardio/terapia , Células Madre Adultas/química , Células Madre Adultas/citología , Animales , Recuento de Células , Diferenciación Celular , División Celular , Linaje de la Célula , Replicación del ADN , Femenino , Hemodinámica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Hibridación Fluorescente in Situ , Antígenos Comunes de Leucocito/análisis , Masculino , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas c-kit/análisis , Ratas , Ratas Endogámicas F344 , Método Simple Ciego , Factores de Tiempo , Ultrasonografía , Disfunción Ventricular Izquierda/etiología
4.
Diabetes Obes Metab ; 20(10): 2389-2398, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29802688

RESUMEN

AIMS: Individuals with both diabetes mellitus (DM) and atherosclerotic cardiovascular disease (ASCVD) are at very high risk of cardiovascular events. This post-hoc analysis evaluated efficacy and safety of the PCSK9 inhibitor alirocumab among 984 individuals with DM and ASCVD pooled from 9 ODYSSEY Phase 3 trials. MATERIALS AND METHODS: Changes in low-density lipoprotein cholesterol (LDL-C) and other lipids from baseline to Week 24 were analysed (intention-to-treat) in four pools by alirocumab dosage (150 mg every 2 weeks [150] or 75 mg with possible increase to 150 mg every 2 weeks [75/150]), control (placebo/ezetimibe) and background statin usage (yes/no). RESULTS: At Week 24, LDL-C changes from baseline in pools with background statins were -61.5% with alirocumab 150 (vs -1.0% with placebo), -46.4% with alirocumab 75/150 (vs +6.3% with placebo) and -48.7% with alirocumab 75/150 (vs -20.6% with ezetimibe), and -54.9% with alirocumab 75/150 (vs +4.0% with ezetimibe) without background statins. A greater proportion of alirocumab recipients achieved LDL-C < 70 and < 55 mg/dL at Week 24 vs controls. Alirocumab also resulted in significant reductions in non-high-density lipoprotein cholesterol, apolipoprotein B and lipoprotein(a) vs controls. Alirocumab did not appear to affect glycaemia over 78-104 weeks. Overall safety was similar between treatment groups, with a higher injection-site reaction frequency (mostly mild) with alirocumab. CONCLUSION: Alirocumab significantly reduced LDL-C and other atherogenic lipid parameters, and was generally well tolerated in individuals with DM and ASCVD.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Ensayos Clínicos Fase III como Asunto/estadística & datos numéricos , Diabetes Mellitus/tratamiento farmacológico , Angiopatías Diabéticas/tratamiento farmacológico , Ezetimiba/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Aterosclerosis/complicaciones , Aterosclerosis/epidemiología , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
5.
Mol Cell Biochem ; 426(1-2): 111-127, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27896594

RESUMEN

Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the "no-flow" period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.


Asunto(s)
Isquemia Encefálica , Señalización del Calcio , Circulación Cerebrovascular , Hipocampo , Potenciales de la Membrana , Células Piramidales , Animales , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/terapia , Hipocampo/química , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Células Piramidales/metabolismo , Daño por Reperfusión/diagnóstico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/terapia
6.
Circ Res ; 113(6): 810-34, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23989721

RESUMEN

Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.


Asunto(s)
Insuficiencia Cardíaca/terapia , Trasplante de Células Madre/métodos , Animales , Ensayos Clínicos como Asunto , Humanos , Trasplante de Células Madre/tendencias , Células Madre/clasificación
7.
Circulation ; 128(2): 122-31, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23757309

RESUMEN

BACKGROUND: Relevant preclinical models are necessary for further mechanistic and translational studies of c-kit+ cardiac stem cells (CSCs). The present study was undertaken to determine whether intracoronary CSCs are beneficial in a porcine model of chronic ischemic cardiomyopathy. METHODS AND RESULTS: Pigs underwent a 90-minute coronary occlusion followed by reperfusion. Three months later, autologous CSCs (n=11) or vehicle (n=10) were infused into the infarct-related artery. At this time, all indices of left ventricular (LV) function were similar in control and CSC-treated pigs, indicating that the damage inflicted by the infarct in the 2 groups was similar; 1 month later, however, CSC-treated pigs exhibited significantly greater LV ejection fraction (echocardiography) (51.7±2.0% versus 42.9±2.3%, P<0.01), systolic thickening fraction in the infarcted LV wall, and maximum LV dP/dt, as well as lower LV end-diastolic pressure. Confocal microscopy showed clusters of small α-sarcomeric actin-positive cells expressing Ki67 in the scar of treated pigs, consistent with cardiac regeneration. The origin of these cycling myocytes from the injected cells was confirmed in 4 pigs that received enhanced green fluorescent protein -labeled CSCs, which were positive for the cardiac markers troponin I, troponin T, myosin heavy chain, and connexin-43. Some engrafted CSCs also formed vascular structures and expressed α-smooth muscle actin. CONCLUSIONS: Intracoronary infusion of autologous CSCs improves regional and global LV function and promotes cardiac and vascular regeneration in pigs with old myocardial infarction (scar). The results mimic those recently reported in humans (Stem Cell Infusion in Patients with Ischemic CardiOmyopathy [SCIPIO] trial) and establish this porcine model of ischemic cardiomyopathy as a useful and clinically relevant model for studying CSCs.


Asunto(s)
Cardiomiopatías/cirugía , Vasos Coronarios/fisiología , Modelos Animales de Enfermedad , Isquemia Miocárdica/cirugía , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/métodos , Animales , Cardiomiopatías/patología , Células Cultivadas , Infusiones Intraarteriales , Masculino , Isquemia Miocárdica/patología , Miocitos Cardíacos/fisiología , Porcinos , Trasplante Autólogo
8.
J Mol Cell Cardiol ; 52(1): 228-36, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22119801

RESUMEN

A growing body of evidence indicates that carbon monoxide (CO), once perceived merely as a poisonous gas, exerts antiapoptotic and cytoprotective effects. Using a water-soluble CO-releasing molecule (CORM) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), we previously reported that CO induces a delayed protection against myocardial infarction similar to that observed in the late phase of ischemic preconditioning (PC). In the current study, we investigated the molecular mechanisms underlying this cardioprotective effect. The impact on apoptotic signaling pathways was first examined in the setting of ischemia/reperfusion injury. Mice were pretreated with CORM-3 or iCORM-3 (which does not release CO) and subjected to coronary occlusion/reperfusion 24h later. In mice that received CORM-3, there was a significant reduction in markers of apoptosis (cleaved lamin A, cleaved caspase-3, and cleaved PARP-1) after ischemia/reperfusion injury. To elucidate the mechanism of CORM-3-induced cardioprotection we further examined the activation of transcription factors and induction of cardioprotective and apoptosis modulating proteins. Infusion of CORM-3 rapidly activated the stress-responsive transcription factors nuclear factor kappaB (NF-κB), signal transducers and activators of transcription (STAT)1, STAT3, and NF-E2-related factor-2 (Nrf2). This was followed 24h later by upregulation of cardioprotective proteins (heme oxygenase-1 [HO-1], cyclooxygenase-2 [COX-2], and extracellular superoxide dismutase [Ec-SOD]) and antiapoptotic proteins involving both the mitochondria-mediated (Mcl-1) and the death receptor-mediated (c-FLIP(S) and c-FLIP(L)) apoptosis pathways. We conclude that CO released by CORM-3 triggers a cardioprotective signaling cascade that recruits the transcription factors NF-κB, STAT1/3, and Nrf2 with a subsequent increase in cardioprotective and antiapoptotic molecules in the myocardium leading to the late PC-mimetic infarct-sparing effects. This article is part of a Special Issue entitled 'Possible Editorial'.


Asunto(s)
Apoptosis/efectos de los fármacos , Monóxido de Carbono/metabolismo , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Compuestos Organometálicos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclooxigenasa 2/metabolismo , Hemo-Oxigenasa 1/metabolismo , Masculino , Ratones , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
9.
Basic Res Cardiol ; 107(2): 253, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22351077

RESUMEN

Although the late phase of ischemic preconditioning is known to be mediated by increased inducible nitric oxide synthase (iNOS) activity, controversy persists regarding the role of iNOS in ischemia/reperfusion (I/R) injury and, specifically, whether this protein is protective or detrimental. We hypothesized that iNOS is protective in myocytes but detrimental in inflammatory cells. To test this hypothesis, we created chimeric mice with iNOS-deficient peripheral blood cells by transplanting iNOS knockout (KO) bone marrow in wild-type (WT) mice after lethal irradiation. 2 months later, the mice underwent a 30-min coronary occlusion followed by 24 h of reperfusion. In WT naïve mice (iNOS(+/+) naïve; group I, n = 17), infarct size was 56.9 ± 2.8% of the risk region. In iNOS KO naïve mice with whole-body iNOS deletion (iNOS(-/-) naïve; group II, n = 10), infarct size was comparable to group I (53.4 ± 3.5%). When irradiated WT mice received marrow from WT mice (iNOS(+/+) chimera; group III, n = 10), infarct size was slightly reduced versus group I (44.3 ± 3.2%), indicating that irradiation and/or transplantation slightly decrease I/R injury. However, when WT mice received marrow from iNOS KO mice (iNOS(-/-) chimera; group IV, n = 14), infarct size was profoundly reduced (22.8 ± 2.1%, P < 0.05 vs. group III), indicating that selective deletion of iNOS from peripheral blood cells (with no change in myocardial iNOS content) induces protection against myocardial infarction. Together with our previous work showing the cardioprotective actions of NO donors, iNOS gene therapy, and cardiac-specific overexpression of iNOS, these data support a complex, dual role of iNOS in myocardial infarction (i.e., protective in myocytes but deleterious in blood cells). To our knowledge, this is the first study to identify a critical role of iNOS in peripheral blood cells as a mediator of myocardial I/R injury. The results support heretofore unknown differential actions of iNOS depending on cell source and have important translational implications.


Asunto(s)
Células Sanguíneas/enzimología , Infarto del Miocardio/enzimología , Daño por Reperfusión Miocárdica/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Células de la Médula Ósea/enzimología , Células Madre Hematopoyéticas/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/etiología , Daño por Reperfusión Miocárdica/complicaciones , Quimera por Trasplante
10.
J Mol Cell Cardiol ; 50(4): 589-97, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21223971

RESUMEN

Pharmacological studies have shown that signal transducers and activators of transcription (STATs) are necessary for the delayed cardioprotection of ischemic preconditioning (PC). However, pharmacologic STAT inhibitors are not specific; furthermore, the individual role of STAT3 in late PC remains unknown. The objectives of the study were (i) to create an inducible, cardiac-specific STAT3 knockout mouse; (ii) to verify whether STAT3 deletion has any adverse effects in the short term (~1 month); and (iii) to use this novel tool to evaluate the role of STAT3 in the PC-induced upregulation of cardioprotective and anti-apoptotic proteins. We created an inducible, cardiomyocyte-restricted STAT3 deficient mouse (MCM TG:STAT3(flox/flox)) by interbreeding STAT3(flox/flox) mice and tamoxifen-inducible MCM TG mice. Treatment of MCM TG:STAT3(flox/flox) mice with tamoxifen resulted in deletion of STAT3 specifically in cardiac myocytes, concomitant with abrogation of ischemic PC-induced Tyr-705 and Ser-727 phosphorylation of STAT3 and increased STAT3 DNA-binding activity. In vehicle-treated MCM TG:STAT3(flox/flox) mice, ischemic PC increased the expression of cardioprotective (COX-2 and HO-1) and anti-apoptotic (e.g., Mcl-1, Bcl-x(L), c-FLIP(L), c-FLIP(S)) proteins 24h later; in contrast, in tamoxifen-treated MCM TG:STAT3(flox/flox) mice this increase was completely absent. Deletion of STAT3 had no apparent adverse effects on LV structure or function after 35 days. We have developed a novel inducible, cardiomyocyte-restricted STAT3 deficient mouse that can be used to specifically interrogate the role of this transcription factor in cardiovascular pathophysiology in vivo. Our data demonstrate, for the first time, that recruitment of STAT3 plays an obligatory role in the upregulation of cardioprotective and anti-apoptotic proteins and suggest that STAT3 activation is important in inhibiting both the death receptor pathway (which is modulated by c-FLIP(L) and c-FLIP(S)) and the mitochondrial pathway (which is mediated by Mcl-1 and Bcl-x(L)).


Asunto(s)
Precondicionamiento Isquémico , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Masculino , Ratones , Ratones Mutantes , Miocitos Cardíacos/metabolismo , Fosforilación , Factor de Transcripción STAT3/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína Letal Asociada a bcl/metabolismo
11.
J Cell Mol Med ; 15(3): 545-54, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20082655

RESUMEN

Although ß-adrenoceptor (ß-AR) blockade is an important mode of therapy for congestive heart failure (CHF), subcellular mechanisms associated with its beneficial effects are not clear. Three weeks after inducing myocardial infarction (MI), rats were treated daily with or without 20 and 75 mg/kg atenolol, a selective ß(1) -AR antagonist, or propranolol, a non-selective ß-AR antagonist, for 5 weeks. Sham operated rats served as controls. All animals were assessed haemodynamically and echocardiographically and the left ventricle (LV) was processed for the determination of myofibrillar ATPase activity, α- and ß-myosin heavy chain (MHC) isoforms and gene expression as well as cardiac troponin I (cTnI) phosphorylation. Both atenolol and propranolol at 20 and 75 mg/kg doses attenuated cardiac hypertrophy and lung congestion in addition to increasing LV ejection fraction and LV systolic pressure as well as decreasing heart rate, LV end-diastolic pressure and LV diameters in the infarcted animals. Treatment of infarcted animals with these agents also attenuated the MI-induced depression in myofibrillar Ca(2+) -stimulated ATPase activity and phosphorylated cTnI protein content. The MI-induced decrease in α-MHC and increase in ß-MHC protein content were attenuated by both atenolol and propranolol at low and high doses; however, only high dose of propranolol was effective in mitigating changes in the gene expression for α-MHC and ß-MHC. Our results suggest that improvement of cardiac function by ß-AR blockade in CHF may be associated with attenuation of myofibrillar remodelling.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Insuficiencia Cardíaca/prevención & control , Corazón/efectos de los fármacos , Miocardio/metabolismo , Animales , Atenolol/farmacología , Northern Blotting , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Relación Dosis-Respuesta a Droga , Ecocardiografía , Expresión Génica/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/efectos de los fármacos , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Propranolol/farmacología , Ratas , Ratas Sprague-Dawley , Troponina I/metabolismo , Remodelación Ventricular/efectos de los fármacos
12.
J Cell Mol Med ; 15(6): 1319-28, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20629987

RESUMEN

Adult bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) exhibit a Sca-1(+)/Lin(-)/CD45(-) phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 10(6)) of freshly isolated, non-expanded VSEL-SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL-SCs in the marrow is very low, we examined whether VSEL-SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n = 11), 1 × 10(5) enhanced green fluorescent protein (EGFP)-labelled expanded untreated VSEL-SCs (group II, n = 7), or 1 × 10(5) EGFP-labelled expanded VSEL-SCs pre-incubated in a cardiogenic medium (group III, n = 8). At 35 days after myocardial infarction (MI), mice treated with pre-incubated VSEL-SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle-treated controls. In contrast, transplantation of expanded but untreated VSEL-SCs did not produce appreciable reparative benefits. Scattered EGFP(+) cells expressing α-sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)-1, or von Willebrand factor were present in VSEL-SC-treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL-SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre-incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL-SCs for cardiac repair.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias , Inyecciones Intramusculares/métodos , Infarto del Miocardio/terapia , Miocardio/patología , Trasplante de Células Madre/métodos , Función Ventricular Izquierda , Animales , Médula Ósea/fisiología , Técnicas de Cultivo de Célula , Oclusión Coronaria/complicaciones , Medios de Cultivo , Citocinas/farmacología , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Proteínas Fluorescentes Verdes/análisis , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Remodelación Ventricular
13.
Circulation ; 121(2): 293-305, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20048209

RESUMEN

BACKGROUND: Administration of cardiac progenitor cells (CPCs) 4 hours after reperfusion ameliorates left ventricular function in rats with acute myocardial infarction (MI). Clinically, however, this approach is not feasible, because expansion of autologous CPCs after acute MI requires several weeks. Therefore, we sought to determine whether CPCs are beneficial in the more clinically relevant setting of an old MI (scar). METHODS AND RESULTS: One month after coronary occlusion/reperfusion, rats received an intracoronary infusion of vehicle or enhanced green fluorescent protein-labeled CPCs. Thirty-five days later, CPC-treated rats exhibited more viable myocardium in the risk region, less fibrosis in the noninfarcted region, and improved left ventricular function. Cells that stained positive for enhanced green fluorescent protein that expressed cardiomyocyte, endothelial, and vascular smooth muscle cell markers were observed only in 7 of 17 treated rats and occupied only 2.6% and 1.1% of the risk and noninfarcted regions, respectively. Transplantation of CPCs was associated with increased proliferation and expression of cardiac proteins by endogenous CPCs. CONCLUSIONS: Intracoronary administration of CPCs in the setting of an old MI produces beneficial structural and functional effects. Although exogenous CPCs can differentiate into new cardiac cells, this mechanism is not sufficient to explain the benefits, which suggests paracrine effects; among these, the present data identify activation of endogenous CPCs. This is the first report that CPCs are beneficial in the setting of an old MI when given by intracoronary infusion, the most widely applicable therapeutic approach in patients. Furthermore, this is the first evidence that exogenous CPC administration activates endogenous CPCs. These results open the door to new therapeutic applications for the use of autologous CPCs in patients with old MI and chronic ischemic cardiomyopathy.


Asunto(s)
Infarto del Miocardio/terapia , Trasplante de Células Madre/métodos , Disfunción Ventricular Izquierda/terapia , Animales , Proliferación Celular , Vasos Coronarios , Fibrosis , Proteínas Fluorescentes Verdes , Infarto del Miocardio/fisiopatología , Miocardio/citología , Comunicación Paracrina , Ratas , Ratas Endogámicas F344 , Daño por Reperfusión/terapia , Factores de Tiempo
14.
Basic Res Cardiol ; 106(5): 709-33, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21541807

RESUMEN

Hematopoietic cytokines, traditionally known to influence cellular proliferation, differentiation, maturation, and lineage commitment in the bone marrow, include granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, stem cell factor, Flt-3 ligand, and erythropoietin among others. Emerging evidence suggests that these cytokines also exert multifarious biological effects on diverse nonhematopoietic organs and tissues. Although the precise mechanisms remain unclear, numerous studies in animal models of myocardial infarction (MI) and heart failure indicate that hematopoietic cytokines confer potent cardiovascular benefits, possibly through mobilization and subsequent homing of bone marrow-derived cells into the infarcted heart with consequent induction of myocardial repair involving multifarious mechanisms. In addition, these cytokines are also known to exert direct cytoprotective effects. However, results from small-scale clinical trials of G-CSF therapy as a single agent after acute MI have been discordant and largely disappointing. It is likely that cardiac repair following cytokine therapy depends on a number of known and unknown variables, and further experimental and clinical studies are certainly warranted to accurately determine the true therapeutic potential of such therapy. In this review, we discuss the biological features of several key hematopoietic cytokines and present the basic and clinical evidence pertaining to cardiac repair with hematopoietic cytokine therapy.


Asunto(s)
Células de la Médula Ósea/fisiología , Citocinas/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Animales , Células de la Médula Ósea/citología , Movimiento Celular/efectos de los fármacos , Citocinas/farmacología , Eritropoyetina/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Proteínas de la Membrana/uso terapéutico , Modelos Animales
15.
Circulation ; 120(13): 1222-30, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19752329

RESUMEN

BACKGROUND: Although inducible nitric oxide synthase (iNOS) is known to impart powerful protection against myocardial infarction, the mechanism for this salubrious action remains unclear. METHODS AND RESULTS: Adenovirus-mediated iNOS gene transfer in mice resulted 48 to 72 hours later in increased expression not only of iNOS protein but also of heme oxygenase (HO)-1 mRNA and protein; HO-2 protein expression did not change. iNOS gene transfer markedly reduced infarct size in wild-type mice, but this effect was completely abrogated in HO-1(-/-) mice. At 48 hours after iNOS gene transfer, nuclear factor-kappaB was markedly activated. In transgenic mice with cardiomyocyte-restricted expression of a dominant negative mutant of IkappaBalpha (IkappaBalpha(S32A,S36A)), both basal HO-1 levels and upregulation of HO-1 by iNOS gene transfer were suppressed. Chromatin immunoprecipitation analysis of mouse hearts provided direct evidence that nuclear factor-kappaB subunits p50 and p65 were recruited to the HO-1 gene promoter (-468 to -459 bp) 48 hours after iNOS gene transfer. CONCLUSIONS: This study demonstrates for the first time the existence of a close functional coupling between cardiac iNOS and cardiac HO-1: iNOS upregulates HO-1 by augmenting nuclear factor-kappaB binding to the region of the HO-1 gene promoter from -468 to -459 bp, and HO-1 then mediates the cardioprotective effects of iNOS. These results also reveal an important role of nuclear factor-kappaB in both basal and iNOS-induced expression of cardiac HO-1. Collectively, the present findings significantly expand our understanding of the regulation of cardiac HO-1 and of the mechanism whereby iNOS exerts its cardioprotective actions.


Asunto(s)
Terapia Genética/métodos , Corazón/fisiología , Hemo-Oxigenasa 1/metabolismo , Infarto del Miocardio/terapia , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Adenoviridae/genética , Animales , Bilirrubina/metabolismo , Temperatura Corporal , Femenino , Técnicas de Transferencia de Gen , Frecuencia Cardíaca , Hemo-Oxigenasa 1/genética , Proteínas I-kappa B/genética , Masculino , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Inhibidor NF-kappaB alfa , Óxido Nítrico Sintasa de Tipo II/metabolismo , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Regulación hacia Arriba/fisiología
16.
Circ Res ; 102(5): 597-606, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18202313

RESUMEN

Heart failure is the leading cause of death in the elderly, but whether this is the result of a primary aging myopathy dictated by depletion of the cardiac progenitor cell (CPC) pool is unknown. Similarly, whether current lifespan reflects the ineluctable genetic clock or heart failure interferes with the genetically determined fate of the organ and organism is an important question. We have identified that chronological age leads to telomeric shortening in CPCs, which by necessity generate a differentiated progeny that rapidly acquires the senescent phenotype conditioning organ aging. CPC aging is mediated by attenuation of the insulin-like growth factor-1/insulin-like growth factor-1 receptor and hepatocyte growth factor/c-Met systems, which do not counteract any longer the CPC renin-angiotensin system, resulting in cellular senescence, growth arrest, and apoptosis. However, pulse-chase 5-bromodeoxyuridine-labeling assay revealed that the senescent heart contains functionally competent CPCs that have the properties of stem cells. This subset of telomerase-competent CPCs have long telomeres and, following activation, migrate to the regions of damage, where they generate a population of young cardiomyocytes, reversing partly the aging myopathy. The senescent heart phenotype and heart failure are corrected to some extent, leading to prolongation of maximum lifespan.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Insuficiencia Cardíaca/terapia , Factor de Crecimiento de Hepatocito/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Células Madre Adultas/metabolismo , Células Madre Adultas/patología , Envejecimiento/patología , Animales , Antígenos de Diferenciación/biosíntesis , Apoptosis/efectos de los fármacos , Recuento de Células , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fenotipo , Ratas , Ratas Endogámicas F344 , Receptores de Factores de Crecimiento/metabolismo , Regeneración/efectos de los fármacos , Tasa de Supervivencia , Telómero/metabolismo
17.
J Mol Cell Cardiol ; 47(4): 528-35, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19616005

RESUMEN

We have previously reported that administration of granulocyte colony-stimulating factor (G-CSF)+Flt-3 ligand (FL) or G-CSF+stem cell factor (SCF) improves left ventricular (LV) function and halts LV remodeling at 35 d after myocardial infarction (MI). In the current study, we investigated whether these beneficial effects are sustained in the long term - an issue of fundamental importance for clinical translation. Mice undergoing a 30-min coronary occlusion followed by reperfusion received vehicle (group I), G-CSF+FL (group II), G-CSF+SCF (group III), or G-CSF alone (group IV) starting 4 h after reperfusion and were euthanized 48 wk later. LV structure and function were assessed by serial echocardiography before and at 48 h and 4, 8, 16, 32, and 48 wk after MI. During follow-up, mice in group I exhibited worsening of LV function and progressive LV remodeling. Compared with group I, both groups II and III exhibited improved LV EF at 4 wk after MI; however, only in group II was this improvement sustained at 48 wk. Group II was also the only group in which the decrease in infarct wall thickening fraction, the LV dilatation, and the increase in LV mass were attenuated vs. group I. We conclude that the beneficial effect of G-CSF+FL on postinfarction LV dysfunction and remodeling is sustained for at least 11 months, and thus is likely to be permanent. In contrast, the effect of G-CSF+SCF was not sustained beyond the first few weeks, and G-CSF alone is ineffective. To our knowledge, this is the first long-term study of cytokines in postinfarction LV remodeling. The results reveal heretofore unknown differential actions of cytokines and have important translational implications.


Asunto(s)
Citocinas/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Animales , Cardiomegalia/complicaciones , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Citocinas/farmacología , Quimioterapia Combinada , Estudios de Seguimiento , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Masculino , Proteínas de la Membrana/farmacología , Proteínas de la Membrana/uso terapéutico , Ratones , Ratones Endogámicos ICR , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Factor de Células Madre/farmacología , Factor de Células Madre/uso terapéutico , Sístole/efectos de los fármacos , Factores de Tiempo , Ultrasonografía , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular/efectos de los fármacos
18.
Stem Cells ; 26(6): 1646-55, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18420834

RESUMEN

Adult bone marrow (BM) contains Sca-1+/Lin-/CD45- very small embryonic-like stem cells (VSELs) that express markers of several lineages, including cardiac markers, and differentiate into cardiomyocytes in vitro. We examined whether BM-derived VSELs promote myocardial repair after a reperfused myocardial infarction (MI). Mice underwent a 30-minute coronary occlusion followed by reperfusion and received intramyocardial injection of vehicle (n= 11), 1 x 10(5) Sca-1+/Lin-/CD45+ enhanced green fluorescent protein (EGFP)-labeled hematopoietic stem cells (n= 13 [cell control group]), or 1 x 10(4) Sca-1+/Lin-/CD45- EGFP-labeled cells (n= 14 [VSEL-treated group]) at 48 hours after MI. At 35 days after MI, VSEL-treated mice exhibited improved global and regional left ventricular (LV) systolic function (echocardiography) and attenuated myocyte hypertrophy in surviving tissue (histology and echocardiography) compared with vehicle-treated controls. In contrast, transplantation of Sca-1+/Lin-/CD45+ cells failed to confer any functional or structural benefits. Scattered EGFP+ myocytes and capillaries were present in the infarct region in VSEL-treated mice, but their numbers were very small. These results indicate that transplantation of a relatively small number of CD45- VSELs is sufficient to improve LV function and alleviate myocyte hypertrophy after MI, supporting the potential therapeutic utility of these cells for cardiac repair. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Cardiomegalia/prevención & control , Células Madre Embrionarias/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Infarto del Miocardio/complicaciones , Disfunción Ventricular Izquierda/prevención & control , Animales , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Citometría de Flujo , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Infarto del Miocardio/patología , Disfunción Ventricular Izquierda/etiología , Remodelación Ventricular
19.
J Mol Cell Cardiol ; 45(6): 735-41, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18824172

RESUMEN

The specific role of TNF-alpha receptors I (TNFR-I, p55) and II (TNFR-II, p75) in myocardial ischemic injury remains unclear. Using genetically engineered mice, we examined the relative effects of TNF-alpha signaling via p55 and p75 in acute myocardial ischemia/reperfusion injury under basal conditions and in late preconditioning (PC). Wild-type (WT) (C57BL/6 and B6,129) mice and mice lacking TNF-alpha (TNF-alpha(-/-)), p55 (p55(-/-)), p75 (p75(-/-)), or both receptors (p55(-/-)/p75(-/-)) underwent 30 min of coronary occlusion and 24 h of reperfusion with or without six cycles of 4-min coronary occlusion/4-min reperfusion (O/R) 24 h earlier (ischemic PC). Six cycles of O/R reduced infarct size 24 h later in WT mice, indicating a late PC effect. This late PC-induced infarct-sparing effect was abolished not only in TNF-alpha(-/-) and p55(-/-)/p75(-/-) mice, but also in p55(-/-) and p75(-/-) mice, indicating that TNF-alpha signaling via both p55 and p75 is necessary for the development of protection. In nonpreconditioned TNF-alpha(-/-), p55(-/-)/p75(-/-), and p75(-/-) mice, infarct size was similar to strain-matched WT mice. In contrast, infarct size in nonpreconditioned p55(-/-) mice was reduced compared with nonpreconditioned WT mice. We conclude that (i) unopposed p75 signaling (in the absence of p55) reduces infarct size following acute ischemia/reperfusion injury in naive myocardium, whereas unopposed p55 signaling (in the absence of p75) has no effect; and (ii) the development of the infarct-sparing effects of the late phase of PC requires nonredundant signaling via both p55 and p75 receptors. These findings reveal a fundamental, heretofore unrecognized, difference between the two TNF-alpha receptors in the setting of myocardial ischemia/reperfusion injury: that is, both p55 and p75 are necessary for the development of protection during late PC, but only signaling via p75 is protective in nonpreconditioned myocardium.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Enfermedad Aguda , Animales , Masculino , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/genética , Factores de Tiempo
20.
Cardiovasc Toxicol ; 8(3): 127-35, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18751928

RESUMEN

Antiplatelet agents, sarpogrelate (SAR), a 5-hydroxy tryptamine 2A receptor antagonist and cilostazol (CIL), a phosphodiesterase-III inhibitor, were observed to be beneficial in attenuating cardiac remodeling and improving cardiac function in congestive heart failure due to myocardial infarction in rats; however, CIL increased ventricular tachycardia and mortality. In order to study the effects of these antiplatelet agents on arrhythmias, Sprague-Dawley rats were pretreated with either SAR or CIL (5 mg/kg/day) for 2 weeks and were then either injected cumulative doses of epinephrine (Epi) or subjected to coronary occlusion. Saline-treated animals served as controls. Electrocardiographic analysis revealed that SAR pretreatment decreased the incidence and severity of ventricular arrhythmias (time of onset of arrhythmias as well as the occurrence of premature ventricular contractions, salvos, tachycardia, and fibrillations), whereas CIL treatment augmented the incidence of cardiac arrhythmias due to both Epi and coronary occlusion. None of the drugs affected the corrected QT interval significantly. Furthermore, the levels of cyclic adenosine monophosphate (cAMP) in left ventricle were markedly higher in CIL-pretreated rats when compared to SAR-pretreated or control rats. It is suggested that an excessive level of cAMP may contribute to increase incidence of ventricular arrhythmias and mortality in animals pretreated with CIL, unlike the SAR-pretreated rats.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Oclusión Coronaria/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/farmacología , Succinatos/farmacología , Tetrazoles/efectos adversos , Animales , Arritmias Cardíacas/metabolismo , Cilostazol , Oclusión Coronaria/complicaciones , Oclusión Coronaria/metabolismo , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Epinefrina , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Masculino , Inhibidores de Agregación Plaquetaria/efectos adversos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA