Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 81(4): 2374-2384, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30488979

RESUMEN

PURPOSE: To develop and evaluate a multishot diffusion-prepared (DP) magnitude-stabilized balanced steady-state free precession (bSSFP) diffusion imaging sequence with improved geometric fidelity. METHODS: A signal spoiler (magnitude stabilizer; MS) was implemented in a DP-bSSFP diffusion sequence. Effects of magnitude stabilizers with respect to phase errors were simulated using Bloch simulation. Phantom study was conducted to compare the apparent diffusion coefficient (ADC) accuracy and geometric reliability, quantified using target registration error (TRE), with diffusion-weighted single-shot echo-planar imaging (DW-ssEPI). Six volunteers were recruited. DW-ssEPI, DP-bSSFP with and without ECG triggering, and DP-MS-bSSFP with and without ECG triggering were acquired 10 times with b = 500 s/mm2 in a single-shot manner to evaluate magnitude variability. Diffusion trace images and diffusion tensor images were acquired using a 4-shot DP-MS-bSSFP. RESULTS: Simulation showed that the DP-MS-bSSFP approach is insensitive to phase errors. The DP-MS-bSSFP approach had satisfactory ADC accuracy on the phantom with <5% difference with DW-ssEPI. The mean/max TRE for DW-ssEPI was 2.31/4.29 mm and was 0.51/1.20 mm for DP-MS-bSSFP. In the repeated single-shot study, DP-bSSFP without ECG triggering had severe signal void artifacts and exhibited a nonrepeatable pattern, which can be partially mitigated by ECG triggering. Adding the MS provided stable signal magnitude across all repetitions. High-quality ADC maps and color-coded fractional anisotropy maps were generated using the 4-shot DP-MS-bSSFP. The mean/max TRE was 2.89/10.80 mm for DW-ssEPI and 0.59/1.69 mm for DP-MS-bSSFP. Good agreements of white matter ADC, cerebrospinal fluid ADC, and white matter fractional anisotropy value were observed between DP-MS-bSSFP and DW-ssEPI. CONCLUSION: The proposed DP-MS-bSSFP approach provided high-quality diffusion-weighted and diffusion-tensor images with minimal geometric distortion.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Electrocardiografía , Sustancia Blanca/diagnóstico por imagen , Anisotropía , Artefactos , Simulación por Computador , Imagen Eco-Planar/métodos , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Fantasmas de Imagen , Reproducibilidad de los Resultados
2.
Opt Express ; 24(12): 13365-74, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410354

RESUMEN

High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 µm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

3.
J Biomech Eng ; 137(10): 101005, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26292034

RESUMEN

Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.


Asunto(s)
Módulo de Elasticidad , Pulmón/diagnóstico por imagen , Pulmón/fisiología , Modelos Biológicos , Respiración , Algoritmos , Tomografía Computarizada Cuatridimensional , Humanos , Hidrodinámica , Modelos Lineales
4.
Phys Med Biol ; 69(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38452385

RESUMEN

Objective. To combat the motion artifacts present in traditional 4D-CBCT reconstruction, an iterative technique known as the motion-compensated simultaneous algebraic reconstruction technique (MC-SART) was previously developed. MC-SART employs a 4D-CBCT reconstruction to obtain an initial model, which suffers from a lack of sufficient projections in each bin. The purpose of this study is to demonstrate the feasibility of introducing a motion model acquired during CT simulation to MC-SART, coined model-based CBCT (MB-CBCT).Approach. For each of 5 patients, we acquired 5DCTs during simulation and pre-treatment CBCTs with a simultaneous breathing surrogate. We cross-calibrated the 5DCT and CBCT breathing waveforms by matching the diaphragms and employed the 5DCT motion model parameters for MC-SART. We introduced the Amplitude Reassignment Motion Modeling technique, which measures the ability of the model to control diaphragm sharpness by reassigning projection amplitudes with varying resolution. We evaluated the sharpness of tumors and compared them between MB-CBCT and 4D-CBCT. We quantified sharpness by fitting an error function across anatomical boundaries. Furthermore, we compared our MB-CBCT approach to the traditional MC-SART approach. We evaluated MB-CBCT's robustness over time by reconstructing multiple fractions for each patient and measuring consistency in tumor centroid locations between 4D-CBCT and MB-CBCT.Main results. We found that the diaphragm sharpness rose consistently with increasing amplitude resolution for 4/5 patients. We observed consistently high image quality across multiple fractions, and observed stable tumor centroids with an average 0.74 ± 0.31 mm difference between the 4D-CBCT and MB-CBCT. Overall, vast improvements over 3D-CBCT and 4D-CBCT were demonstrated by our MB-CBCT technique in terms of both diaphragm sharpness and overall image quality.Significance. This work is an important extension of the MC-SART technique. We demonstrated the ability ofa priori5DCT models to provide motion compensation for CBCT reconstruction. We showed improvements in image quality over both 4D-CBCT and the traditional MC-SART approach.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Humanos , Proyectos Piloto , Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Tomografía Computarizada de Haz Cónico/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Fantasmas de Imagen , Algoritmos
5.
Stud Health Technol Inform ; 184: 380-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23400188

RESUMEN

The aim of this paper is to enable model guided multi-scale and multi-modal image integration for the head and neck anatomy. The image modality used for this purpose includes multi-pose Magnetic Resonance Imaging (MRI), Mega Voltage CT, and hand-held Optical Coherence Tomography. A biomechanical model that incorporates subject-specific young's modulus and shear modulus properties is developed from multi-pose MRI, positioned in the treatment setup using Mega Voltage CT (MVCT), and actuated using multiple kinect surface cameras to mimic patient postures during Optical Coherence Microscopy (OCM) imaging. Two different 3D tracking mechanisms were employed for aligning the patient surface and the probe position to the MRI data. The results show the accuracy of the two tracking algorithms and the 3D head and neck deformation representing the multiple poses, the subject will take during the OCM imaging.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/radioterapia , Modelos Biológicos , Radioterapia Asistida por Computador/métodos , Técnica de Sustracción , Interfaz Usuario-Computador , Simulación por Computador , Humanos , Integración de Sistemas
6.
Front Med (Lausanne) ; 10: 1151867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840998

RESUMEN

Purpose: Recent advancements in obtaining image-based biomarkers from CT images have enabled lung function characterization, which could aid in lung interventional planning. However, the regional heterogeneity in these biomarkers has not been well documented, yet it is critical to several procedures for lung cancer and COPD. The purpose of this paper is to analyze the interlobar and intralobar heterogeneity of tissue elasticity and study their relationship with COPD severity. Methods: We retrospectively analyzed a set of 23 lung cancer patients for this study, 14 of whom had COPD. For each patient, we employed a 5DCT scanning protocol to obtain end-exhalation and end-inhalation images and semi-automatically segmented the lobes. We calculated tissue elasticity using a biomechanical property estimation model. To obtain a measure of lobar elasticity, we calculated the mean of the voxel-wise elasticity values within each lobe. To analyze interlobar heterogeneity, we defined an index that represented the properties of the least elastic lobe as compared to the rest of the lobes, termed the Elasticity Heterogeneity Index (EHI). An index of 0 indicated total homogeneity, and higher indices indicated higher heterogeneity. Additionally, we measured intralobar heterogeneity by calculating the coefficient of variation of elasticity within each lobe. Results: The mean EHI was 0.223 ± 0.183. The mean coefficient of variation of the elasticity distributions was 51.1% ± 16.6%. For mild COPD patients, the interlobar heterogeneity was low compared to the other categories. For moderate-to-severe COPD patients, the interlobar and intralobar heterogeneities were highest, showing significant differences from the other groups. Conclusion: We observed a high level of lung tissue heterogeneity to occur between and within the lobes in all COPD severity cases, especially in moderate-to-severe cases. Heterogeneity results demonstrate the value of a regional, function-guided approach like elasticity for procedures such as surgical decision making and treatment planning.

7.
Stud Health Technol Inform ; 173: 205-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22356987

RESUMEN

The aim of this paper is to model the airflow inside lungs during breathing and its fluid-structure interaction with the lung tissues and the lung tumor using subject-specific elastic properties. The fluid-structure interaction technique simultaneously simulates flow within the airway and anisotropic deformation of the lung lobes. The three-dimensional (3D) lung geometry is reconstructed from the end-expiration 3D CT scan datasets of humans with lung cancer. The lung is modeled as a poro-elastic medium with anisotropic elastic property (non-linear Young's modulus) obtained from inverse lung elastography of 4D CT scans for the same patients. The predicted results include the 3D anisotropic lung deformation along with the airflow pattern inside the lungs. The effect is also presented of anisotropic elasticity on both the spatio-temporal volumetric lung displacement and the regional lung hysteresis.


Asunto(s)
Biología Computacional , Simulación por Computador , Pulmón/fisiología , Modelos Biológicos , Respiración , Anisotropía , Módulo de Elasticidad , Humanos , Imagenología Tridimensional , Neoplasias Pulmonares
8.
Int J Comput Assist Radiol Surg ; 17(1): 185-197, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34328596

RESUMEN

PURPOSE: Computational fluid dynamics (CFD) of lung airflow during normal and pathophysiological breathing provides insight into regional pulmonary ventilation. By integrating CFD methods with 4D lung imaging workflows, regions of normal pulmonary function can be spared during treatment planning. To facilitate the use of CFD simulations in a clinical setup, a robust, automated, and CFD-compliant airway mesh generation technique is necessary. METHODS: We define a CFD-compliant airway mesh to be devoid of blockages of airflow and leaks in the airway path, both of which are caused by airway meshing errors that occur when using conventional meshing techniques. We present an algorithm to create a CFD-compliant airway mesh in an automated manner. Beginning with a medial skeleton of the airway segmentation, the branches were tracked, and 3D points at which bifurcations occur were identified. Airway branches and bifurcation features were isolated to allow for automated and careful meshing that considered their anatomical nature. RESULTS: We present the meshing results from three state-of-the-art tools and compare them with the meshes generated by our algorithm. The results show that fully CFD-compliant meshes were automatically generated for an ideal geometry and patient-specific CT scans. Using an open-source smoothed-particle hydrodynamics CFD implementation, we compared the airflow using our approach and conventionally generated airway meshes. CONCLUSION: Our meshing algorithm was able to successfully generate a CFD-compliant mesh from pre-segmented lung CT scans, providing an automatic meshing approach that enables interventional CFD simulations to guide lung procedures such as radiotherapy or lung volume reduction surgery.


Asunto(s)
Hidrodinámica , Mallas Quirúrgicas , Simulación por Computador , Humanos , Pulmón/diagnóstico por imagen , Respiración
9.
Front Oncol ; 12: 777793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847951

RESUMEN

Purpose: This study aimed to evaluate the clinical need for an automated decision-support software platform for adaptive radiation therapy (ART) of head and neck cancer (HNC) patients. Methods: We tested RTapp (SegAna), a new ART software platform for deciding when a treatment replan is needed, to investigate a set of 27 HNC patients' data retrospectively. For each fraction, the software estimated key components of ART such as daily dose distribution and cumulative doses received by targets and organs at risk (OARs) from daily 3D imaging in real-time. RTapp also included a prediction algorithm that analyzed dosimetric parameter (DP) trends against user-specified thresholds to proactively trigger adaptive re-planning up to four fractions ahead. The DPs evaluated for ART were based on treatment planning dose constraints. Warning (V95<95%) and adaptation (V95<93%) thresholds were set for PTVs, while OAR adaptation dosimetric endpoints of +10% (DE10) were set for all Dmax and Dmean DPs. Any threshold violation at end of treatment (EOT) triggered a review of the DP trends to determine the threshold-crossing fraction Fx when the violations occurred. The prediction model accuracy was determined as the difference between calculated and predicted DP values with 95% confidence intervals (CI95). Results: RTapp was able to address the needs of treatment adaptation. Specifically, we identified 18/27 studies (67%) for violating PTV coverage or parotid Dmean at EOT. Twelve PTVs had V95<95% (mean coverage decrease of -6.8 ± 2.9%) including six flagged for adaptation at median Fx = 6 (range, 1-16). Seventeen parotids were flagged for exceeding Dmean dose constraints with a median increase of +2.60 Gy (range, 0.99-6.31 Gy) at EOT, including nine with DP>DE10. The differences between predicted and calculated PTV V95 and parotid Dmean was up to 7.6% (mean ± CI95, -2.7 ± 4.1%) and 5 Gy (mean ± CI95, 0.3 ± 1.6 Gy), respectively. The most accurate predictions were obtained closest to the threshold-crossing fraction. For parotids, the results showed that Fx ranged between fractions 1 and 23, with a lack of specific trend demonstrating that the need for treatment adaptation may be verified for every fraction. Conclusion: Integrated in an ART clinical workflow, RTapp aids in predicting whether specific treatment would require adaptation up to four fractions ahead of time.

10.
Stud Health Technol Inform ; 163: 567-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21335858

RESUMEN

This paper reports on the usage of physics-based 3D volumetric lung dynamic models for visualizing and monitoring the radiation dose deposited on the lung of a human subject during lung radiotherapy. The dynamic model of each subject is computed from a 4D Computed Tomography (4DCT) imaging acquired before the treatment. The 3D lung deformation and the radiation dose deposited are computed using Graphics Processing Units (GPU). Additionally, using the dynamic lung model, the airflow inside the lungs during the treatment is also investigated. Results show the radiation dose deposited on the lung tumor as well as the surrounding tissues, the combination of which is patient-specific and varies from one treatment fraction to another.


Asunto(s)
Imagenología Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Radioterapia Asistida por Computador/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Tomografía Computarizada por Rayos X/métodos , Interfaz Usuario-Computador , Sistemas de Computación , Humanos , Tamaño de los Órganos , Radioterapia Conformacional/métodos
11.
Int J Comput Assist Radiol Surg ; 16(10): 1775-1784, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34378122

RESUMEN

PURPOSE: Fast helical free-breathing CT (FHFBCT) scans are widely used for 5DCT and 5D Cone Beam imaging protocols. For quantitative analysis of lung physiology and function, it is important to segment the lung lobes in these scans. Since the 5DCT protocols use up to 25 FHFBCT scans, it is important that this segmentation task be automated. In this paper, we present a deep neural network (DNN) framework for segmenting the lung lobes in near real time. METHODS: A total of 22 patient datasets (550 3D CT scans) were used for the study. Each of the lung lobes was manually segmented and considered ground-truth. A supervised and constrained generative adversarial network (CGAN) was employed for learning each set of lobe segmentations for each patient with 12 patients designated for training data. The resulting generator DNNs represented the lobe segmentations for each training dataset. A quorum-based algorithm was then implemented to test validation data consisting of 10 separate patient datasets (250 3D CTs). Each of the DNNs predicted their corresponding lobes for the validation data, and equal weights were given to the 12 generator CGANs. The quorum process worked by selecting the weighted average result of all 12 CGAN results for each lobe. RESULTS: When evaluated against ground-truth segmentations, the quorum-based lobe segmentation was observed to have average structural similarity index, normalized cross-correlation coefficient, and dice coefficient values of 0.929, 0.806, and 0.814, respectively, compared to values of 0.911, 0.698, and 0.696, respectively, using a conventional strategy. CONCLUSION: The proposed quorum-based approach computed segmentations with clinically acceptable accuracy in near real time using a multi-GPU-based computing setup. This method is scalable as more patient-specific CGANs can be added to the quorum over time.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos , Pulmón/diagnóstico por imagen , Respiración
12.
Med Phys ; 48(4): 1823-1831, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33550622

RESUMEN

PURPOSE: To quantify the use of anterior torso skin surface position measurement as a breathing surrogate. METHODS: Fourteen patients were scanned 25 times in alternating directions using a free-breathing low-mA fast helical CT protocol. Simultaneously, an abdominal pneumatic bellows was used as a real-time breathing surrogate. The imaged diaphragm dome position was used as a gold standard surrogate, characterized by localizing the most superior points of the diaphragm dome in each lung. These positions were correlated against the bellows signal acquired at the corresponding scan times. The bellows system has been shown to have a slow linear drift, and the bellows-to-CT synchronization process had a small uncertainty, so the drift and time offset were determined by maximizing the correlation coefficient between the craniocaudal diaphragm position and the drift-corrected bellows signal. The corresponding fit was used to model the real-time diaphragm position. To estimate the effectiveness of skin surface positions as surrogates, the anterior torso surface position was measured from the CT scans and correlated against the diaphragm position model. The residual error was defined as the root-mean-square correlation residual with the breathing amplitude normalized to the 5th to 95th breathing amplitude percentiles. The fit residual errors were analyzed over the surface for the fourteen studied patients and reported as percentages of the 5th to 95th percentile ranges. RESULTS: A strong correlation was measured between the diaphragm motion and the abdominal bellows signal with an average residual error of 9.21% and standard deviation of 3.77%. In contrast, the correlations between the diaphragm position model and patient surface positions varied throughout the torso and from patient to patient. However, a consistently high correlation was found near the abdomen for each patient, and the average minimum residual error relating the skin surface to the diaphragm was 11.8% with a standard deviation of 4.61%. CONCLUSIONS: The thoracic patient surface was found to be an accurate surrogate, but the accuracy varied across the surface sufficiently that care would need to be taken to use the surface as an accurate and reliable surrogate. Future studies will use surface imaging to determine surface patch algorithms that utilize the entire chest as well as thoracic and abdominal breathing relationships.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada Espiral , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Movimiento (Física) , Movimiento , Respiración , Tomografía Computarizada por Rayos X
13.
Med Phys ; 48(2): 667-675, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32449519

RESUMEN

PURPOSE: Lung elastography aims at measuring the lung parenchymal tissue elasticity for applications ranging from diagnostic purposes to biomechanically guided deformations. Characterizing the lung tissue elasticity requires four-dimensional (4D) lung motion as an input, which is currently estimated by deformably registering 4D computed tomography (4DCT) datasets. Since 4DCT imaging is widely used only in a radiotherapy treatment setup, there is a need to predict the elasticity distribution in the absence of 4D imaging for applications within and outside of radiotherapy domain. METHODS: In this paper, we present a machine learning-based method that predicts the three-dimensional (3D) lung tissue elasticity distribution for a given end-expiration 3DCT. The method to predict the lung tissue elasticity from an end-expiration 3DCT employed a deep neural network that predicts the tissue elasticity for the given CT dataset. For training and validation purposes, we employed five-dimensional CT (5DCT) datasets and a finite element biomechanical lung model. The 5DCT model was first used to generate end-expiration lung geometry, which was taken as the source lung geometry for biomechanical modeling. The deformation vector field pointing from end expiration to end inhalation was computed from the 5DCT model and taken as input in order to solve for the lung tissue elasticity. An inverse elasticity estimation process was employed, where we iteratively solved for the lung elasticity distribution until the model reproduced the ground-truth deformation vector field. The machine learning process uses a specific type of learning process, namely a constrained generalized adversarial neural network (cGAN) that learned the lung tissue elasticity in a supervised manner. The biomechanically estimated tissue elasticity together with the end-exhalation CT was the input for the supervised learning. The trained cGAN generated the elasticity from a given breath-hold CT image. The elasticity estimated was validated in two approaches. In the first approach, a L2-norm-based direct comparison was employed between the estimated elasticity and the ground-truth elasticity. In the second approach, we generated a synthetic four-dimensional CT (4DCT0 using a lung biomechanical model and the estimated elasticity and compared the deformations with the ground-truth 4D deformations using three image similarity metrics: mutual Information (MI), structured similarity index (SSIM), and normalized cross correlation (NCC). RESULTS: The results show that a cGAN-based machine learning approach was effective in computing the lung tissue elasticity given the end-expiration CT datasets. For the training data set, we obtained a learning accuracy of 0.44 ± 0.2 KPa. For the validation dataset, consisting of 13 4D datasets, we were able to obtain an accuracy of 0.87 ± 0.4 KPa. These results show that the cGAN-generated elasticity correlates well with that of the underlying ground-truth elasticity. We then integrated the estimated elasticity with the biomechanical model and applied the same boundary conditions in order to generate the end inhalation CT. The cGAN-generated images were very similar to that of the original end inhalation CT. The average value of the MI is 1.77 indicating the high local symmetricity between the ground truth and the cGAN elasticity-generated end inhalation CT data. The average value of the structural similarity for the 13 patients was observed to be 0.89 indicating the high structural integrity of the cGAN elasticity-generated end inhalation CT. Finally, the average NCC value of 0.97 indicates that potential variations in the contrast and brightness of the cGAN elasticity-generated end inhalation CT and the ground-truth end inhalation CT. CONCLUSION: The cGAN-generated lung tissue elasticity given an end-expiration CT image can be computed in near real time. Using the lung tissue elasticity along with a biomechanical model, 4D lung deformations can be generated from a given end-expiration CT image within clinically acceptable numerical accuracy.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Pulmón , Elasticidad , Humanos , Pulmón/diagnóstico por imagen , Aprendizaje Automático , Respiración
14.
Med Phys ; 48(10): 6094-6105, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34410014

RESUMEN

PURPOSE: To examine the use of multiple fast-helical free breathing computed tomography (FHFBCT) scans for ventilation measurement. METHODS: Ten patients were scanned 25 times in alternating directions using a FHFBCT protocol. Simultaneously, an abdominal pneumatic bellows was used as a real-time breathing surrogate. Regions-of-interest (ROIs) were selected from the upper right lungs of each patient for analysis. The ROIs were first registered using a published registration technique (pTV). A subsequent follow-up registration employed an objective function with two terms, a ventilation-adjusted Hounsfield Unit difference and a conservation-of-mass term labeled ΔΓ that denoted the difference between the deformation Jacobian and the tissue density ratio. The ventilations were calculated voxel-by-voxel as the slope of a first-order fit of the Jacobian as a function of the breathing amplitude. RESULTS: The ventilations of the 10 patients showed different patterns and magnitudes. The average ventilation calculated from the deformation vector fields (DVFs) of the pTV and secondary registration was nearly identical, but the standard deviation of the voxel-to-voxel differences was approximately 0.1. The mean of the 90th percentile values of ΔΓ was reduced from 0.153 to 0.079 between the pTV and secondary registration, implying first that the secondary registration improved the conservation-of-mass criterion by almost 50% and that on average the correspondence between the Jacobian and density ratios as demonstrated by ΔΓ was less than 0.1. This improvement occurred in spite of the average of the 90th percentile changes in the DVF magnitudes being only 0.58 mm. CONCLUSIONS: This work introduces the use of multiple free-breathing CT scans for free-breathing ventilation measurements. The approach has some benefits over the traditional use of 4-dimensional CT (4DCT) or breath-hold scans. The benefit over 4DCT is that FHFBCT does not have sorting artifacts. The benefits over breath-hold scans include the relatively small motion induced by quiet respiration versus deep-inspiration breath hold and the potential for characterizing dynamic breathing processes that disappear during breath hold.


Asunto(s)
Neoplasias Pulmonares , Artefactos , Tomografía Computarizada Cuatridimensional , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Respiración , Tomografía Computarizada Espiral
15.
Med Phys ; 47(3): 1094-1104, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31853975

RESUMEN

PURPOSE: To develop and demonstrate the efficacy of a novel head-and-neck multimodality image registration technique using deep-learning-based cross-modality synthesis. METHODS AND MATERIALS: Twenty-five head-and-neck patients received magnetic resonance (MR) and computed tomography (CT) (CTaligned ) scans on the same day with the same immobilization. Fivefold cross validation was used with all of the MR-CT pairs to train a neural network to generate synthetic CTs from MR images. Twenty-four of 25 patients also had a separate CT without immobilization (CTnon-aligned ) and were used for testing. CTnon-aligned 's were deformed to the synthetic CT, and compared to CTnon-aligned registered to MR. The same registrations were performed from MR to CTnon-aligned and from synthetic CT to CTnon-aligned . All registrations used B-splines for modeling the deformation, and mutual information for the objective. Results were evaluated using the 95% Hausdorff distance among spinal cord contours, landmark error, inverse consistency, and Jacobian determinant of the estimated deformation fields. RESULTS: When large initial rigid misalignment is present, registering CT to MRI-derived synthetic CT aligns the cord better than a direct registration. The average landmark error decreased from 9.8 ± 3.1 mm in MR→CTnon-aligned to 6.0 ± 2.1 mm in CTsynth →CTnon-aligned deformable registrations. In the CT to MR direction, the landmark error decreased from 10.0 ± 4.3 mm in CTnon-aligned →MR deformable registrations to 6.6 ± 2.0 mm in CTnon-aligned →CTsynth deformable registrations. The Jacobian determinant had an average value of 0.98. The proposed method also demonstrated improved inverse consistency over the direct method. CONCLUSIONS: We showed that using a deep learning-derived synthetic CT in lieu of an MR for MR→CT and CT→MR deformable registration offers superior results to direct multimodal registration.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Humanos , Imagen por Resonancia Magnética , Imagen Multimodal
16.
Med Phys ; 47(8): 3369-3375, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32128820

RESUMEN

PURPOSE: Elastography using computer tomography (CT) is a promising methodology that can provide patient-specific regional distributions of lung biomechanical properties. The purpose of this paper is to investigate the feasibility of performing elastography using simulated lower dose CT scans. METHODS: A cohort of eight patient CT image pairs were acquired with a tube current-time product of 40 mAs for estimating baseline lung elastography results. Synthetic low mAs CT scans were generated from the baseline scans to simulate the additional noise that would be present in acquisitions at 30, 25, and 20 mAs, respectively. For the simulated low mAs scans, exhalation and inhalation datasets were registered using an in-house optical flow deformable image registration algorithm. The registered deformation vector fields (DVFs) were taken to be ground truth for the elastography process. A model-based elasticity estimation was performed for each of the reduced mAs datasets, in which the goal was to optimize the elasticity distribution that best represented their respective DVFs. The estimated elasticity and the DVF distributions of the reduced mAs scans were then compared with the baseline elasticity results for quantitative accuracy purposes. RESULTS: The DVFs for the low mAs and baseline scans differed from each other by an average of 1.41 mm, which can be attributed to the noise added by the simulated reduction in mAs. However, the elastography results using the DVFs from the reduced mAs scans were similar from the baseline results, with an average elasticity difference of 0.65, 0.71, and 0.76 kPa, respectively. This illustrates that elastography can provide equivalent results using low-dose CT scans. CONCLUSIONS: Elastography can be performed equivalently using CT image pairs acquired with as low as 20 mAs. This expands the potential applications of CT-based elastography.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Computadores , Estudios de Factibilidad , Humanos , Pulmón/diagnóstico por imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X
17.
Med Phys ; 47(11): 5555-5567, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32521048

RESUMEN

PURPOSE: Lung biomechanical models are important for understanding and characterizing lung anatomy and physiology. A key parameter of biomechanical modeling is the underlying tissue elasticity distribution. While human lung elasticity estimations do not have ground truths, model consistency checks can and should be employed to gauge the stability of the estimation techniques. This work proposes such a consistency check using a set of 10 subjects. METHODS: We hypothesize that lung dynamics will be stable over a 2-3 min time period and that this stability can be employed to check biomechanical estimation stability. For this purpose, two sets of 12 fast helical free breathing computed tomography scans (FHFBCT) were acquired back-to-back for each of the subjects. A published breathing motion model [five-dimensional CT (5DCT)] was generated from each set. Both of the models were used to generate two biomechanical modeling input sets: (a) The lung geometry at the end-exhalation, and (b) the voxel displacement map that mapped the end-exhalation lung geometry with the end-inhalation lung geometry. Finite element biomechanical lung models were instantiated using the end-exhalation lung geometries. The models included voxel-specific lung tissue elasticity values and were optimized using a gradient search approach until the biomechanical model-generated displacement maps matched those of the 5DCT voxel displacement maps. Finally, the two elasticity distributions associated with each of the patient 5DCTs were quantitatively compared. Because the end-exhalation geometries differed slightly between the two scan datasets, the elasticity distributions were deformably mapped to one of the exhalation datasets. RESULTS: For the 10 patients, on average, 90% of parenchymal voxels had <2 kPa Young's modulus difference between the two estimations, with a mean voxel difference of only 0.6 kPa. Similarly, 97% of the parenchymal voxels had <2 mm displacement difference between the two models with a mean difference of 0.48 mm. Furthermore, overlapping elasticity histograms for voxels between -600 and -900 HU (parenchymal tissues) showed that the histograms were consistent between the two estimations. CONCLUSION: In this paper, we demonstrated that biomechanical lung models can be consistently estimated when using motion-model based imaging datasets, even though the models were created from scans acquired at different breaths.


Asunto(s)
Pulmón , Respiración , Elasticidad , Humanos , Pulmón/diagnóstico por imagen , Movimiento (Física) , Tomografía Computarizada Espiral
18.
Biomed Phys Eng Express ; 6(1): 015033, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33438621

RESUMEN

Electron density maps must be accurately estimated to achieve valid dose calculation in MR-only radiotherapy. The goal of this study is to assess whether two deep learning models, the conditional generative adversarial network (cGAN) and the cycle-consistent generative adversarial network (cycleGAN), can generate accurate abdominal synthetic CT (sCT) images from 0.35T MR images for MR-only liver radiotherapy. A retrospective study was performed using CT images and 0.35T MR images of 12 patients with liver (n = 8) and non-liver abdominal (n = 4) cancer. CT images were deformably registered to the corresponding MR images to generate deformed CT (dCT) images for treatment planning. Both cGAN and cycleGAN were trained using MR and dCT transverse slices. Four-fold cross-validation testing was conducted to generate sCT images for all patients. The HU prediction accuracy was evaluated by voxel-wise similarity metric between each dCT and sCT image for all 12 patients. dCT-based and sCT-based dose distributions were compared using gamma and dose-volume histogram (DVH) metric analysis for 8 liver patients. sCTcycleGAN achieved the average mean absolute error (MAE) of 94.1 HU, while sCTcGAN achieved 89.8 HU. In both models, the average gamma passing rates within all volumes of interest were higher than 95% using a 2%, 2 mm criterion, and 99% using a 3%, 3 mm criterion. The average differences in the mean dose and DVH metrics were within ±0.6% for the planning target volume and within ±0.15% for evaluated organs in both models. Results: demonstrated that abdominal sCT images generated by both cGAN and cycleGAN achieved accurate dose calculation for 8 liver radiotherapy plans. sCTcGAN images had smaller average MAE and achieved better dose calculation accuracy than sCTcyleGAN images. More abdominal patients will be enrolled in the future to further evaluate the two models.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Hepáticas/patología , Imagen por Resonancia Magnética/métodos , Radiografía Abdominal/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Masculino , Persona de Mediana Edad , Pronóstico , Dosificación Radioterapéutica , Estudios Retrospectivos
19.
Br J Radiol ; 92(1094): 20180296, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30281329

RESUMEN

OBJECTIVE:: Lung tissue elasticity is an effective spatial representation for Chronic Obstructive Pulmonary Disease phenotypes and pathophysiology. We investigated a novel imaging biomarker based on the voxel-by-voxel distribution of lung tissue elasticity. Our approach combines imaging and biomechanical modeling to characterize tissue elasticity. METHODS:: We acquired 4DCT images for 13 lung cancer patients with known COPD diagnoses based on GOLD 2017 criteria. Deformation vector fields (DVFs) from the deformable registration of end-inhalation and end-exhalation breathing phases were taken to be the ground-truth. A linear elastic biomechanical model was assembled from end-exhalation datasets with a density-guided initial elasticity distribution. The elasticity estimation was formulated as an iterative process, where the elasticity was optimized based on its ability to reconstruct the ground-truth. An imaging biomarker (denoted YM1-3) derived from the optimized elasticity distribution, was compared with the current gold standard, RA950 using confusion matrix and area under the receiver operating characteristic (AUROC) curve analysis. RESULTS:: The estimated elasticity had 90 % accuracy when representing the ground-truth DVFs. The YM1-3 biomarker had higher diagnostic accuracy (86% vs 71 %), higher sensitivity (0.875 vs 0.5), and a higher AUROC curve (0.917 vs 0.875) as compared to RA950. Along with acting as an effective spatial indicator of lung pathophysiology, the YM1-3 biomarker also proved to be a better indicator for diagnostic purposes than RA950. CONCLUSIONS:: Overall, the results suggest that, as a biomarker, lung tissue elasticity will lead to new end points for clinical trials and new targeted treatment for COPD subgroups. ADVANCES IN KNOWLEDGE:: The derivation of elasticity information directly from 4DCT imaging data is a novel method for performing lung elastography. The work demonstrates the need for a mechanics-based biomarker for representing lung pathophysiology.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Elasticidad , Tomografía Computarizada Cuatridimensional , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Biomarcadores , Estudios de Factibilidad , Humanos , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/clasificación , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Sensibilidad y Especificidad
20.
Med Phys ; 46(4): 1523-1532, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30656699

RESUMEN

PURPOSE: In-house software is commonly employed to implement new imaging and therapy techniques before commercial solutions are available. Risk analysis methods, as detailed in the TG-100 report of the American Association of Physicists in Medicine, provide a framework for quality management of processes but offer little guidance on software design. In this work, we examine a novel model-based four-dimensional computed tomography (4DCT) protocol using the TG-100 approach and describe two additional methods for promoting safety of the associated in-house software. METHODS: To implement a previously published model-based 4DCT protocol, in-house software was necessary for tasks such as synchronizing a respiratory signal to computed tomography images, deformable image registration (DIR), model parameter fitting, and interfacing with a treatment planning system. A process map was generated detailing the workflow. Failure modes and effects analysis (FMEA) was performed to identify critical steps and guide quality interventions. Software system safety was addressed through writing "use cases," narratives that characterize the behavior of the software, for all major operations to elicit safety requirements. Safety requirements were codified using the easy approach to requirements syntax (EARS) to ensure testability and eliminate ambiguity. RESULTS: Sixty-one failure modes were identified and assigned risk priority numbers using FMEA. Resultant quality management interventions include integration of a comprehensive reporting and logging system into the software, mandating daily and monthly equipment quality assurance procedures, and a checklist to be completed at image acquisition. Use cases and resulting safety requirements informed the design of needed in-house software as well as a suite of tests performed during the image generation process. CONCLUSIONS: TG-100 methods were used to construct a process-level quality management program for a 4DCT imaging protocol. Two supplemental tools from the field of requirements engineering facilitated elicitation and codification of safety requirements that informed the design and testing of in-house software necessary to implement the protocol. These general tools can be applied to promote safety when in-house software is needed to bring new techniques to the clinic.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/fisiología , Mecánica Respiratoria/fisiología , Programas Informáticos/normas , Humanos , Pulmón/diagnóstico por imagen , Modelos Biológicos , Movimiento , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA