Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 152(3): 504-18, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374346

RESUMEN

Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ubiquinona/análogos & derivados , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Dimetilaliltranstransferasa/genética , Aparato de Golgi/metabolismo , Corazón/embriología , Humanos , Miocardio/citología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
2.
Development ; 148(7)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789914

RESUMEN

Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.


Asunto(s)
Desarrollo Embrionario , Músculo Liso/crecimiento & desarrollo , Miocitos del Músculo Liso/fisiología , Vertebrados/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Sistema Cardiovascular , Diferenciación Celular/fisiología , Tracto Gastrointestinal , Pulmón , Mesodermo , Músculo Liso/citología , Músculo Liso/embriología , Músculo Liso Vascular/embriología , Músculo Liso Vascular/crecimiento & desarrollo , Miocitos del Músculo Liso/citología , Organogénesis/fisiología , Sistema Respiratorio , Vertebrados/embriología
3.
PLoS Genet ; 14(1): e1007138, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357359

RESUMEN

Congenital or neonatal cardiomyopathies are commonly associated with a poor prognosis and have multiple etiologies. In two siblings, a male and female, we identified an undescribed type of lethal congenital restrictive cardiomyopathy affecting the right ventricle. We hypothesized a novel autosomal recessive condition. To identify the cause, we performed genetic, in vitro and in vivo studies. Genome-wide SNP typing and parametric linkage analysis was done in a recessive model to identify candidate regions. Exome sequencing analysis was done in unaffected and affected siblings. In the linkage regions, we selected candidate genes that harbor two rare variants with predicted functional effects in the patients and for which the unaffected sibling is either heterozygous or homozygous reference. We identified two compound heterozygous variants in KIF20A; a maternal missense variant (c.544C>T: p.R182W) and a paternal frameshift mutation (c.1905delT: p.S635Tfs*15). Functional studies confirmed that the R182W mutation creates an ATPase defective form of KIF20A which is not able to support efficient transport of Aurora B as part of the chromosomal passenger complex. Due to this, Aurora B remains trapped on chromatin in dividing cells and fails to translocate to the spindle midzone during cytokinesis. Translational blocking of KIF20A in a zebrafish model resulted in a cardiomyopathy phenotype. We identified a novel autosomal recessive congenital restrictive cardiomyopathy, caused by a near complete loss-of-function of KIF20A. This finding further illustrates the relationship of cytokinesis and congenital cardiomyopathy.


Asunto(s)
Cardiomiopatías/congénito , Cardiomiopatías/genética , Cinesinas/genética , Mutación Missense , Femenino , Genes Letales , Heterocigoto , Humanos , Lactante , Muerte del Lactante , Masculino , Linaje , Embarazo , Recurrencia , Hermanos
4.
Development ; 144(3): 464-478, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049660

RESUMEN

Intestinal smooth muscle cells (iSMCs) are a crucial component of the adult gastrointestinal tract and support intestinal differentiation, peristalsis and epithelial homeostasis during development. Despite these crucial roles, the origin of iSMCs and the mechanisms responsible for their differentiation and function remain largely unknown in vertebrates. Here, we demonstrate that iSMCs arise from the lateral plate mesoderm (LPM) in a stepwise process. Combining pharmacological and genetic approaches, we show that TGFß/Alk5 signaling drives the LPM ventral migration and commitment to an iSMC fate. The Alk5-dependent induction of zeb1a and foxo1a is required for this morphogenetic process: zeb1a is responsible for driving LPM migration around the gut, whereas foxo1a regulates LPM predisposition to iSMC differentiation. We further show that TGFß, zeb1a and foxo1a are tightly linked together by miR-145 In iSMC-committed cells, TGFß induces the expression of miR-145, which in turn is able to downregulate zeb1a and foxo1a The absence of miR-145 results in only a slight reduction in the number of iSMCs, which still express mesenchymal genes but fail to contract. Together, our data uncover a cascade of molecular events that govern distinct morphogenetic steps during the emergence and differentiation of vertebrate iSMCs.


Asunto(s)
Intestinos/citología , Miocitos del Músculo Liso/citología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Mucosa Intestinal/metabolismo , Intestinos/embriología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Morfogénesis , Miocitos del Músculo Liso/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
5.
Mol Cell ; 42(5): 569-83, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21549626

RESUMEN

E3 ligases mediate the covalent attachment of ubiquitin to target proteins thereby enabling ubiquitin-dependent signaling. Unraveling how E3 ligases are regulated is important because miscontrolled ubiquitylation can lead to disease. Cellular inhibitor of apoptosis (cIAP) proteins are E3 ligases that modulate diverse biological processes such as cell survival, proliferation, and migration. Here, we have solved the structure of the caspase recruitment domain (CARD) of cIAP1 and identified that it is required for cIAP1 autoregulation. We demonstrate that the CARD inhibits activation of cIAP1's E3 activity by preventing RING dimerization, E2 binding, and E2 activation. Moreover, we show that the CARD is required to suppress cell proliferation and migration. Further, CARD-mediated autoregulation is also necessary to maximally suppress caspase-8-dependent apoptosis and vascular tree degeneration in vivo. Taken together, our data reveal mechanisms by which the E3 ligase activity of cIAP1 is controlled, and how its deregulation impacts on cell proliferation, migration and cell survival.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Secuencia de Aminoácidos , Animales , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Humanos , Proteínas Inhibidoras de la Apoptosis/química , Proteínas Inhibidoras de la Apoptosis/genética , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína/fisiología , Alineación de Secuencia , Electricidad Estática , Ubiquitina-Proteína Ligasas/química , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Cell Mol Life Sci ; 72(17): 3281-303, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25972278

RESUMEN

The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.


Asunto(s)
Células Endoteliales/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Neovascularización Fisiológica/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Proteínas Tirosina Fosfatasas/metabolismo
8.
Mol Cell Neurosci ; 68: 103-19, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25937343

RESUMEN

During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5(-/-) olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5-Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hormona Liberadora de Gonadotropina/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Vías Olfatorias/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Femenino , Factores de Transcripción Forkhead/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/genética , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Vías Olfatorias/citología , Embarazo , Pez Cebra
9.
Arterioscler Thromb Vasc Biol ; 34(9): 1846-53, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24903092

RESUMEN

The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and spreading. Targeting of molecular pathways involved in such tumor angiogenetic processes by using specific drugs or inhibitors is important for developing new anticancer therapies. Drug discovery remains to be the main focus for biomedical research and represents the essence of antiangiogenesis cancer research. To pursue these molecular and pharmacological goals, researchers need to use animal models that facilitate the elucidation of tumor angiogenesis mechanisms and the testing of antiangiogenic therapies. The past few years have seen the zebrafish system emerge as a valid model organism to study developmental angiogenesis and, more recently, as an alternative vertebrate model for cancer research. In this review, we will discuss why the zebrafish model system has the advantage of being a vertebrate model equipped with easy and powerful transgenesis as well as imaging tools to investigate not only physiological angiogenesis but also tumor angiogenesis. We will also highlight the potential of zebrafish for identifying antitumor angiogenesis drugs to block tumor development and progression. We foresee the zebrafish model as an important system that can possibly complement well-established mouse models in cancer research to generate novel insights into the molecular mechanism of the tumor angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neovascularización Fisiológica/efectos de los fármacos , Pez Cebra , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Técnicas de Transferencia de Gen , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Microscopía Confocal , Terapia Molecular Dirigida , Trasplante de Neoplasias , Neovascularización Patológica/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad de la Especie , Relación Estructura-Actividad , Pez Cebra/embriología
10.
Arterioscler Thromb Vasc Biol ; 38(12): 2763-2764, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571178
11.
Exp Cell Res ; 319(9): 1324-30, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23262024

RESUMEN

microRNAs (miRNAs) have a pivotal role during the formation and function of the cardiovascular system. More than 300 miRNAs have been currently found within the mammalian genome, however only few specific miRNAs, named endomiRNAs, showed conseved endothelial cell expression and function. In this review we present an overview of the currently known endomiRNAs, focusing on their genome localization, processing and target gene repression during vasculogenesis and angiogenesis.


Asunto(s)
Células Endoteliales/fisiología , MicroARNs/genética , Neovascularización Fisiológica/genética , Transducción de Señal , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Humanos , MicroARNs/metabolismo , MicroARNs/fisiología , Familia de Multigenes , Interferencia de ARN
12.
Trends Cancer ; 10(6): 541-556, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580535

RESUMEN

Metastasis has a major part in the severity of disease and lethality of cancer. Circulating tumour cells (CTCs) represent a reservoir of metastatic precursors in circulation, most of which cannot survive due to hostile conditions in the bloodstream. Surviving cells colonise a secondary site based on a combination of physical, metabolic, and oxidative stress protection states required for that environment. Recent advances in CTC isolation methods and high-resolution 'omics technologies are revealing specific metabolic pathways that support this selection of CTCs. In this review, we discuss recent advances in our understanding of CTC biology and discoveries of adaptations in metabolic pathways during their selection. Understanding these traits and delineating mechanisms by which they confer acquired resistance or vulnerability in CTCs is crucial for developing successful prognostic and therapeutic strategies in cancer.


Asunto(s)
Neoplasias , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Redes y Vías Metabólicas , Estrés Oxidativo , Metástasis de la Neoplasia , Pronóstico
13.
Nat Commun ; 15(1): 8214, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294175

RESUMEN

CoQ10 (Coenzyme Q10) is an essential fat-soluble metabolite that plays a key role in cellular metabolism. A less-known function of CoQ10 is whether it may act as a plasma membrane-stabilizing agent and whether this property can affect cancer development and progression. Here, we show that CoQ10 and its biosynthetic enzyme UBIAD1 play a critical role in plasmamembrane mechanical properties that are of interest for breast cancer (BC) progression and treatment. CoQ10 and UBIAD1 increase membrane fluidity leading to increased cell stiffness in BC. Furthermore, CoQ10 and UBIAD1 states impair ECM (extracellular matrix)-mediated oncogenic signaling and reduce ferroptosis resistance in BC settings. Analyses on human patients and mouse models reveal that UBIAD1 loss is associated with BC development and progression and UBIAD1 expression in BC limits CTCs (circulating tumor cells) survival and lung metastasis formation. Overall, this study reveals that CoQ10 and UBIAD1 can be further investigated to develop therapeutic interventions to treat BC patients with poor prognosis.


Asunto(s)
Neoplasias de la Mama , Matriz Extracelular , Ferroptosis , Transducción de Señal , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Humanos , Ferroptosis/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Animales , Femenino , Matriz Extracelular/metabolismo , Ratones , Línea Celular Tumoral , Membrana Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Regulación Neoplásica de la Expresión Génica
14.
Cell Metab ; 35(7): 1093-1095, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437542

RESUMEN

The metabolic mechanisms supporting the process of endothelial-to-mesenchymal transition (EndMT) remain largely unknown. Here, Zhu et al. describe a novel role for acetate and ACC2 in regulating EndMT and atherosclerosis via modulation of the TGF-ß signaling. This study sheds light on the role of glucose-derived metabolites that drive endothelial pathophysiology.


Asunto(s)
Acetatos , Aterosclerosis , Glucosa , Factor de Crecimiento Transformador beta , Humanos , Acetatos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
Methods Mol Biol ; 2572: 191-202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36161418

RESUMEN

The use of transgenic animals carrying exogenous DNA integrated in their genome is a routine in modern-day laboratories. Nowadays, the zebrafish system represents the most useful tool for transgenesis studies mainly due to easy accessibility and manipulation of the eggs, which are produced in high numbers and over a relatively short generation time. The zebrafish transgenic technology is very straightforward when coupled with angiogenesis studies allowing easy in vivo observation of the vertebrate embryonic vasculature. Here, we describe the most common technique to generate vascular-labelled transgenic zebrafish embryos and their applications to study tumor angiogenesis and visualize tumor extravasation.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Animales Modificados Genéticamente , ADN , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neovascularización Patológica/genética , Pez Cebra/genética
16.
Cardiovasc Res ; 119(10): 1952-1968, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37052172

RESUMEN

AIMS: The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS: Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S): Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/genética , Células Endoteliales/metabolismo , Regiones Promotoras Genéticas , Ciclo Celular , Mamíferos/genética , Mamíferos/metabolismo
17.
Cancers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681715

RESUMEN

Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient's life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.

18.
Redox Biol ; 51: 102272, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255427

RESUMEN

Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Melanoma , Neoplasias Cutáneas , Antioxidantes/metabolismo , Muerte Celular , Humanos , Peroxidación de Lípido , Melanoma/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacología , Melanoma Cutáneo Maligno
19.
Nat Metab ; 4(1): 123-140, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102339

RESUMEN

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Asunto(s)
Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fosforilación Oxidativa , Vía de Pentosa Fosfato , Animales , Biomarcadores , Elastina/biosíntesis , Elastina/genética , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Hemodinámica , Ratones , Ratones Noqueados , Modelos Biológicos , Estrés Oxidativo , Pentosafosfatos/metabolismo , Pez Cebra
20.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35580611

RESUMEN

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Asunto(s)
Ácido Aspártico , Células Endoteliales , Diana Mecanicista del Complejo 1 de la Rapamicina , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Ácido Aspártico/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Biosíntesis de Proteínas/fisiología , Pirimidinas , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA