RESUMEN
The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.
RESUMEN
The rotational dynamics of microparticles in liquids have a wide range of applications, including chemical microreactors, biotechnologies, microfluidic devices, tunable heat and mass transfer, and fundamental understanding of chiral active soft matter which refers to systems composed of particles that exhibit a handedness in their rotation, breaking mirror symmetry at the microscopic level. Here, we report on the study of two effects in colloids in rotating electric fields: (i) the rotation of individual colloidal particles in rotating electric field and related to that (ii) precession of pairs of particles. We show that the mechanism responsible for the rotation of individual particles is related to the time lag between the external field applied to the particle and the particle polarization. Using numerical simulations and experiments with silica particles in a water-based solvent, we prove that the observed rotation of particle pairs and triplets is governed by the tunable rotation of individual particles and can be explained and described by the action of hydrodynamic forces. Our findings demonstrate that colloidal suspensions in rotating electric fields, under some conditions, represent a novel class of chiral soft active matter-tunable colloidal spinners. The experiments and the corresponding theoretical framework we developed open novel prospects for future studies of these systems and for their potential applications.
RESUMEN
Controlling the assembly of molybdenum disulfide (MoS2) layers into static and dynamic superstructures can impact on their use in optoelectronics, energy, and drug delivery. Toward this goal, we present a strategy to drive the assembly of MoS2 layers via the hybridization of complementary DNA linkers. By functionalizing the MoS2 surface with thiolated DNA, MoS2 nanosheets were assembled into mulitlayered superstructures, and the complementary DNA strands were used as linkers. A disassembly process was triggered by the formation of an intramolecular i-motif structure at a cystosine-rich sequence in the DNA linker at acidic pH values. We tested the versatility of our approach by driving the disassembly of the MoS2 superstructures through a different DNA-based mechanism, namely strand displacement. This study demonstrates how DNA can be employed to drive the static and dynamic assembly of MoS2 nanosheets in aqueous solution.
Asunto(s)
Molibdeno , Nanoestructuras , ADN , Sistemas de Liberación de Medicamentos , Hibridación de Ácido NucleicoRESUMEN
The change in dispersion of high-frequency excitations in fluids, from an oscillating solidlike to a monotonic gaslike one, is shown for the first time to affect thermal behavior of heat capacity and the q-gap width in reciprocal space. With in silico study of liquified noble gases, liquid iron, liquid mercury, and model fluids, we established universal bilinear dependence of heat capacity on q-gap width, whereas the crossover precisely corresponds to the change in the excitation spectra. The results open novel prospects for studies of various fluids, from simple to molecular liquids and melts.
RESUMEN
Accurate analysis of pair correlations in condensed matter allows us to establish relations between structures and thermodynamic properties and, thus, is of high importance for a wide range of systems, from solids to colloidal suspensions. Recently, the interpolation method (IM) that describes satisfactorily the shape of pair correlation peaks at short and at long distances has been elaborated theoretically and using molecular dynamics simulations, but it has not been verified experimentally as yet. Here, we test the IM by particle-resolved studies with colloidal suspensions and with complex (dusty) plasmas and demonstrate that, owing to its high accuracy, the IM can be used to experimentally measure parameters that describe interaction between particles in these systems. We used three- and two-dimensional colloidal crystals and monolayer complex (dusty) plasma crystals to explore suitability of the IM in systems with soft to hard-sphere-like repulsion between particles. In addition to the systems with pairwise interactions, if many-body interactions can be mapped to the pairwise ones with some effective (e.g., density-dependent) parameters, the IM could be used to obtain these parameters. The results reliably show that the IM can be effectively used for analysis of pair correlations and interactions in a wide variety of systems and therefore is of broad interest in condensed matter, complex plasma, chemical physics, physical chemistry, materials science, and soft matter.
RESUMEN
Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.
RESUMEN
A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.
RESUMEN
We demonstrate a spectroscopic imaging based super-resolution approach by separating the overlapping diffraction spots into several detectors during a single scanning period and taking advantage of the size-dependent emission wavelength in nanoparticles. This approach has been tested using off-the-shelf quantum dots (Invitrogen Qdot) and in-house novel ultra-small (~3 nm) Ge QDs. Furthermore, we developed a method-specific Gaussian fitting and maximum likelihood estimation based on a Matlab algorithm for fast QD localisation. This methodology results in a three-fold improvement in the number of localised QDs compared to non-spectroscopic images. With the addition of advanced ultra-small Ge probes, the number can be improved even further, giving at least 1.5 times improvement when compared to Qdots. Using a standard scanning confocal microscope we achieved a data acquisition rate of 200 ms per image frame. This is an improvement on single molecule localisation super-resolution microscopy where repeated image capture limits the imaging speed, and the size of fluorescence probes limits the possible theoretical localisation resolution. We show that our spectral deconvolution approach has a potential to deliver data acquisition rates on the ms scale thus providing super-resolution in live systems.
Asunto(s)
Fluorescencia , Puntos Cuánticos , Espectrometría de Fluorescencia , Funciones de VerosimilitudRESUMEN
The sensitivity of X-ray absorption near-edge structure (XANES) to the local symmetry has been investigated in small (â¼4â nm) matrix-free Ge quantum dots. The FDMNES package was used to calculate the theoretical XANES spectra that were compared with the experimental data of as-prepared and annealed nanoparticles. It was found that XANES data for an as-prepared sample can only be adequately described if the second coordination shell of the diamond-type structural model is included in the FDMNES calculations. This is in contrast to the extended X-ray absorption fine-structure data that show only the first-shell signal. These results suggest that, despite the high degree of disorder and a large surface-to-volume ratio, as-prepared small Ge quantum dots retain the diamond-type symmetry beyond the first shell. Furthermore, we utilized this sensitivity of XANES to the local symmetry to study annealed Ge quantum dots and found evidence for significant structural distortion which we attribute to the existence of surface disorder in the annealed oxygen-free Ge quantum dots.
RESUMEN
Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.
RESUMEN
The structure of small (2-5 nm) Ge quantum dots prepared by the colloidal synthesis route is examined. Samples were synthesized using either GeO2 or GeCl4 as precursor. As-prepared samples were further annealed under Ar or H2/Ar atmosphere at different temperatures in order to understand the effect of annealing on their structure. It was found that as-prepared samples possess distinctly different structures depending on their synthesis route as indicated by their long-range ordering. An appreciable amount of oxygen was found to be bound to Ge in samples prepared with GeO2 as a precursor; however, not for GeCl4. Based on combined transmission electron microscope, Raman, X-ray diffraction and X-ray absorption measurements, it is suggested that as-prepared samples are best described by the core-shell model with a small nano-crystalline core and an amorphous outer layer terminated either with oxygen or hydrogen depending on the synthesis route. Annealing in an H2Ar atmosphere leads to sample crystallization and further nanoparticle growth, while at the same time reducing the Ge-O bonding. X-ray diffraction measurements for as-prepared and annealed samples indicate that diamond-type and metastable phases are present.
RESUMEN
Analysis of the extended X-ray absorption fine structure (EXAFS) can yield local structural information in magic size clusters even when other structural methods (such as X-ray diffraction) fail, but typically requires an initial guess - an atomistic model. Model comparison is thus one of the most crucial steps in establishing atomic structure of nanoscale systems and relies critically on the corresponding figures of merit (delivered by the data analysis) to make a decision on the most suitable model of atomic arrangements. However, none of the currently used statistical figures of merit take into account the significant factor of parameter correlations. Here we show that ignoring such correlations may result in a selection of an incorrect structural model. We then report on a new metric based on Bayes theorem that addresses this problem. We show that our new metric is superior to the currently used in EXAFS analysis as it reliably yields correct structural models even in cases when other statistical criteria may fail. We then demonstrate the utility of the new figure of merit in comparison of structural models for CdS magic-size clusters using EXAFS data.
RESUMEN
The validation of super-resolution optical imaging techniques requires well-defined reference samples that can be used repeatedly and reliably as model standards. Here, we engineer a DNA origami scaffold-mediated multicolour quantum dot hybrid nanostructure and test it using a recently proposed Quantum Dot-based spectral separation technique. We show that multivalent DNA structures offer a robust and precise nanoscale quantum dot placement scaffold, while the spectral resolution method provides relatively simple and fast image acquisition capabilities using any standard confocal or fluorescence microscope capable of spectral signal separation and a single excitation laser wavelength.
RESUMEN
Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.
Asunto(s)
Coloides , Laboratorios , Electricidad , Transición de Fase , AguaRESUMEN
Melting is one of the most studied phase transitions important for atomic, molecular, colloidal, and protein systems. However, there is currently no microscopic experimentally accessible criteria that can be used to reliably track a system evolution across the transition, while providing insights into melting nucleation and melting front evolution. To address this, we developed a theoretical mean-field framework with the normalised mean-square displacement between particles in neighbouring Voronoi cells serving as the local order parameter, measurable experimentally. We tested the framework in a number of colloidal and in silico particle-resolved experiments against systems with significantly different (Brownian and Newtonian) dynamic regimes and found that it provides excellent description of system evolution across melting point. This new approach suggests a broad scope for application in diverse areas of science from materials through to biology and beyond. Consequently, the results of this work provide a new guidance for nucleation theory of melting and are of broad interest in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.
RESUMEN
In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.
Asunto(s)
Rastreo Celular , Colorantes Fluorescentes/química , Rodaminas/química , Animales , Carbono/química , Línea Celular , Línea Celular Tumoral , Humanos , Ratones , Imagen Óptica , Polímeros/química , Puntos Cuánticos/químicaRESUMEN
Newton's third law-the action-reaction symmetry-can be violated for effective interbody forces in open and nonequilibrium systems that are ubiquitous in areas as diverse as complex plasmas, colloidal suspensions, active and living soft matter, and social behavior. While studying monolayer complex plasma (confined charged particles in an ionized gas) with nonreciprocal interactions mediated by plasma flows, in silico we found that an interplay between melting and thermal activation drastically transforms the collective dynamics: the order-disorder transition modifies the system's thermal steady state so that the crystal tends to melt, whereas the fluid tends to freeze, jumping chaotically between the two states. We identified this collective chaotic behavior as strange attractors formed in a monolayer complex plasma and link the strange attractor behavior to the specifics of interparticle interactions.
RESUMEN
Magic-size clusters are ultra-small colloidal semiconductor systems that are intensively studied due to their monodisperse nature and sharp UV-vis absorption peak compared with regular quantum dots. However, the small size of such clusters (<2 nm), and the large surface-to-bulk ratio significantly limit characterisation techniques that can be utilised. Here we demonstrate how a combination of EXAFS and XANES analyses can be used to obtain information about sample stoichiometry and cluster symmetry. Investigating two types of clusters that show sharp UV-vis absorption peaks at 311 nm and 322 nm, we found that both samples possess approximately 2 : 1 Cd : S ratio and have similar nearest-neighbour structural arrangements. However, both samples demonstrate a significant departure from the tetrahedral structural arrangement, with an average bond angle determined to be around 106.1° showing a bi-fold bond angle distribution. Our results suggest that both samples are quasi-isomers - their core structures have identical chemical compositions, but different atomic arrangements with distinct bond angle distributions.
RESUMEN
The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.
RESUMEN
A significant number of key properties of condensed matter are determined by the spectra of elementary excitations and, in particular, collective vibrations. However, the behavior and description of collective modes in disordered media (e.g., liquids and glasses) remains a challenging area of modern condensed matter science. Recently, anticrossing between longitudinal and transverse modes was predicted theoretically and observed in molecular dynamics simulations, but this fundamental phenomenon has never been observed experimentally. Here we demonstrate the mode anticrossing in a simple Yukawa fluid constructed from charged microparticles in weakly ionized gas. Theory, simulations, and experiments show clear evidence of mode anticrossing that is accompanied by mode hybridization and strong redistribution of the excitation spectra. Our results provide a significant advance in understanding excitations of fluids, opening new perspectives for studies of dynamics, thermodynamics, and transport phenomena in a wide variety of systems from noble-gas fluids and metallic melts to strongly coupled plasmas and molecular and complex fluids.