Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194536

RESUMEN

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Asunto(s)
Antibacterianos , Desinfectantes , Estados Unidos , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Estudios Longitudinales , Bacterias/genética , Farmacorresistencia Microbiana/genética , Agua , Riego Agrícola , Aguas Residuales , Genes Bacterianos
2.
Environ Res ; 204(Pt A): 111937, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34464616

RESUMEN

Ongoing climate variability and change is impacting pollen exposure dynamics among sensitive populations. However, pollen data that can provide beneficial information to allergy experts and patients alike remains elusive. The lack of high spatial resolution pollen data has resulted in a growing interest in using phenology information that is derived using satellite observations to infer key pollen events including start of pollen season (SPS), timing of peak pollen season (PPS), and length of pollen season (LPS). However, it remains unclear if the agreement between satellite-based phenology information (e.g. start of season: SOS) and the in-situ pollen dynamics vary based on the type of satellite product itself or the processing methods used. To address this, we investigated the relationship between vegetation phenology indicator (SOS) derived from two separate sensor/satellite observations (MODIS, Landsat), and two different processing methods (double logistic regression (DLM) vs hybrid piecewise logistic regression (HPLM)) with in-situ pollen season dynamics (SPS, PPS, LPS) for three dominant allergenic tree pollen species (birch, oak, and poplar) that dominate the springtime allergy season in North America. Our results showed that irrespective of the data processing method (i.e. DLM vs HPLM), the MODIS-based SOS to be more closely aligned with the in-situ SPS, and PPS while upscaled Landsat based SOS had a better precision. The data products obtained using DLM processing methods tended to perform better than the HPLM based methods. We further showed that MODIS based phenology information along with temperature and latitude can be used to infer in-situ pollen dynamic for tree pollen during spring time. Our findings suggest that satellite-based phenology information may be useful in the development of early warning systems for allergic diseases.


Asunto(s)
Clima , Polen , Cambio Climático , Imágenes Satelitales , Estaciones del Año , Temperatura
3.
Environ Res ; 204(Pt B): 112127, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34582801

RESUMEN

BACKGROUND: Typical thermoregulatory responses to elevated temperatures among healthy individuals include reduced blood pressure and perspiration. Individuals with end-stage kidney disease (ESKD) are susceptible to systemic fluctuations caused by ambient temperature changes that may increase morbidity and mortality. We investigated whether pre-dialysis systolic blood pressure (preSBP) and interdialytic weight gain (IDWG) can independently mediate the association between ambient temperature, all-cause hospital admissions (ACHA), and all-cause mortality (ACM). METHODS: The study population consisted of ESKD patients receiving hemodialysis treatments at Fresenius Medical Care facilities in Philadelphia County, PA, from 2011 to 2019 (n = 1981). Within a time-to-event framework, we estimated the association between daily maximum dry-bulb temperature (TMAX) and, as separate models, ACHA and ACM during warmer calendar months. Clinically measured preSBP and IDWG responses to temperature increases were estimated using linear mixed effect models. We employed the difference (c-c') method to decompose total effect models for ACHA and ACM using preSBP and IDWG as time-dependent mediators. Covariate adjustments for exposure-mediator and total and direct effect models include age, race, ethnicity, blood pressure medication use, treatment location, preSBP, and IDWG. We considered lags up to two days for exposure and 1-day lag for mediator variables (Lag 2-Lag 1) to assure temporality between exposure-outcome models. Sensitivity analyses for 2-day (Lag 2-only) and 1-day (Lag 1-only) lag structures were also conducted. RESULTS: Based on Lag 2- Lag 1 temporal ordering, 1 °C increase in daily TMAX was associated with increased hazard of ACHA by 1.4% (adjusted hazard ratio (HR), 1.014; 95% confidence interval, 1.007-1.021) and ACM 7.5% (adjusted HR, 1.075, 1.050-1.100). Short-term lag exposures to 1 °C increase in temperature predicted mean reductions in IDWG and preSBP by 0.013-0.015% and 0.168-0.229 mmHg, respectively. Mediation analysis for ACHA identified significant indirect effects for all three studied pathways (preSBP, IDWG, and preSBP + IDWG) and significant indirect effects for IDWG and conjoined preSBP + IDWG pathways for ACM. Of note, only 1.03% of the association between temperature and ACM was mediated through preSBP. The mechanistic path for IDWG, independent of preSBP, demonstrated inconsistent mediation and, consequently, potential suppression effects in ACHA (-15.5%) and ACM (-6.3%) based on combined pathway models. Proportion mediated estimates from preSBP + IDWG pathways achieved 2.2% and 0.3% in combined pathway analysis for ACHA and ACM outcomes, respectively. Lag 2 discrete-time ACM mediation models exhibited consistent mediation for all three pathways suggesting that 2-day lag in IDWG and preSBP responses can explain 2.11% and 4.41% of total effect association between temperature and mortality, respectively. CONCLUSION: We corroborated the previously reported association between ambient temperature, ACHA and ACM. Our results foster the understanding of potential physiological linkages that may explain or suppress temperature-driven hospital admissions and mortality risks. Of note, concomitant changes in preSBP and IDWG may have little intermediary effect when analyzed in combined pathway models. These findings advance our assessment of candidate interventions to reduce the impact of outdoor temperature change on ESKD patients.


Asunto(s)
Fallo Renal Crónico , Diálisis Renal , Hospitalización , Hospitales , Humanos , Fallo Renal Crónico/terapia , Temperatura
4.
Appl Environ Microbiol ; 87(13): e0021121, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893119

RESUMEN

Enteric viruses (EVs) are the largest contributors to foodborne illnesses and outbreaks globally. Their ability to persist in the environment, coupled with the challenges experienced in environmental monitoring, creates a critical aperture through which agricultural crops may become contaminated. This study involved a 17-month investigation of select human EVs and viral indicators in nontraditional irrigation water sources (surface and reclaimed waters) in the Mid-Atlantic region of the United States. Real-time quantitative PCR was used for detection of Aichi virus, hepatitis A virus, and norovirus genotypes I and II (GI and GII, respectively). Pepper mild mottle virus (PMMoV), a common viral indicator of human fecal contamination, was also evaluated, along with atmospheric (air and water temperature, cloud cover, and precipitation 24 h, 7 days, and 14 days prior to sample collection) and physicochemical (dissolved oxygen, pH, salinity, and turbidity) data, to determine whether there were any associations between EVs and measured parameters. EVs were detected more frequently in reclaimed waters (32% [n = 22]) than in surface waters (4% [n = 49]), similar to PMMoV detection frequency in surface (33% [n = 42]) and reclaimed (67% [n = 21]) waters. Our data show a significant correlation between EV and PMMoV (R2 = 0.628, P < 0.05) detection levels in reclaimed water samples but not in surface water samples (R2 = 0.476, P = 0.78). Water salinity significantly affected the detection of both EVs and PMMoV (P < 0.05), as demonstrated by logistic regression analyses. These results provide relevant insights into the extent and degree of association between human (pathogenic) EVs and water quality data in Mid-Atlantic surface and reclaimed waters, as potential sources for agricultural irrigation. IMPORTANCE Microbiological analysis of agricultural waters is fundamental to ensure microbial food safety. The highly variable nature of nontraditional sources of irrigation water makes them particularly difficult to test for the presence of viruses. Multiple characteristics influence viral persistence in a water source, as well as affecting the recovery and detection methods that are employed. Testing for a suite of viruses in water samples is often too costly and labor-intensive, making identification of suitable indicators for viral pathogen contamination necessary. The results from this study address two critical data gaps, namely, EV prevalence in surface and reclaimed waters of the Mid-Atlantic region of the United States and subsequent evaluation of physicochemical and atmospheric parameters used to inform the potential for the use of indicators of viral contamination.


Asunto(s)
Riego Agrícola , Enterovirus/aislamiento & purificación , Tobamovirus/aislamiento & purificación , Contaminantes del Agua/análisis , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Mid-Atlantic Region , Oxígeno/análisis , Salinidad , Microbiología del Agua , Contaminación del Agua/análisis
5.
Environ Sci Technol ; 55(12): 8128-8138, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34078083

RESUMEN

Hairdressers may be differentially exposed to phthalates through hair salon services provided and products used, yet no U.S. studies have investigated these exposures in this population. We characterized concentrations and exposure determinants to nine phthalate metabolites in postshift urine samples among 23 hairdressers from three Black and three Dominican salons, as well as a comparison group of 17 female office workers from the Maryland/Washington D.C. metropolitan area. Overall, hairdressers had higher metabolite concentrations than office workers. The geometric mean (GM) for monoethyl phthalate (MEP) was 10 times higher in hairdressers (161.4 ng/mL) than office workers (15.3 ng/mL). Hairdressers providing select services and using certain products had higher GM MEP concentrations than those who did not: permanent waves/texturizing (200.2 vs 115.4 ng/mL), chemical straightening/relaxing (181.6 vs 92.1 ng/mL), bleaching (182.3 vs 71.6 ng/mL), permanent hair color (171.9 vs 83.2 ng/mL), and Brazilian blowout/keratin treatments (181.4 vs 134.6 ng/mL). Interestingly, hairdressers providing natural services had lower GM MEP concentrations than those who did not: twists (129.1 vs 215.8 ng/mL), sister locs/locs (86.0 vs 241.9 ng/mL), and afros (94.7 vs 203.9 ng/mL). Larger studies are warranted to confirm our findings and identify disparities in occupational phthalate exposures.


Asunto(s)
Exposición Profesional , Ácidos Ftálicos , Negro o Afroamericano , Brasil , Exposición a Riesgos Ambientales , Femenino , Hispánicos o Latinos , Humanos , Maryland , Proyectos Piloto , Washingtón
6.
Environ Res ; 196: 110417, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33217433

RESUMEN

INTRODUCTION: Enteric Fever (EF) affects over 14.5 million people every year globally, with India accounting for the largest share of this burden. The water-borne nature of the disease makes it prone to be influenced as much by unsanitary living conditions as by climatic factors. The detection and quantification of the climatic effect can lead to improved public health measures which would in turn reduce this burden. METHODOLOGY: We obtained a list of monthly Widal positive EF cases from 1995 to 2017 from Ahmedabad and Surat Municipalities. We obtained population data, daily weather data, and Oceanic Niño Index values from appropriate sources. We quantified the association between extreme weather events, phases of El Niño Southern Oscillations (ENSO) and incidence of EF. RESULTS: Both cities showed a seasonal pattern of EF, with cases peaking in early monsoon. Risk of EF was affected equally in both cities by the monsoon season -- Ahmedabad (35%) and Surat (34%). Extreme precipitation was associated with 5% increase in EF in Ahmedabad but not in Surat. Similarly, phases of ENSO had opposite effects on EF across the two cities. In Ahmedabad, strong El Niño months were associated with 64% increase in EF risk while strong La Niña months with a 41% reduction in risk. In Surat, strong El Niño was associated with 25% reduction in risk while moderate La Niña with 21% increase in risk. CONCLUSIONS: Our results show that the risk of EF incidence in Gujarat is highly variable, even between the two cities only 260 kms apart. In addition to improvements in water supply and sewage systems, preventive public health measures should incorporate variability in risk across season and phases of ENSO. Further studies are needed to characterize nationwide heterogeneity in climate-mediated risk, and to identify most vulnerable populations that can benefit through early warning systems.


Asunto(s)
Clima Extremo , Fiebre Tifoidea , El Niño Oscilación del Sur , Humanos , Incidencia , India/epidemiología , Tiempo (Meteorología)
7.
Environ Health ; 20(1): 105, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537076

RESUMEN

BACKGROUND: Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. METHODS: To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. RESULTS: We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. CONCLUSIONS: Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.


Asunto(s)
Cambio Climático , Clima Extremo , Enfermedades Transmitidas por los Alimentos/epidemiología , Infecciones por Salmonella/epidemiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Monitoreo Epidemiológico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Riesgo , Estados Unidos , Adulto Joven
8.
Int J Biometeorol ; 65(11): 1787-1797, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33913038

RESUMEN

In recent years, there have been considerable changes in the distribution of diseases that are potentially tied to ongoing climate variability. The aim of this study was to investigate the association between the incidence of cutaneous leishmaniasis (CL) and climatic factors in an Iranian city (Isfahan), which had the highest incidence of CL in the country. CL incidence and meteorological data were acquired from April 2010 to March 2017 (108 months) for Isfahan City. Univariate and multivariate seasonal autoregressive integrated moving average (SARIMA), generalized additive models (GAM), and generalized additive mixed models (GAMM) were used to identify the association between CL cases and meteorological variables, and forecast CL incidence. AIC, BIC, and residual tests were used to test the goodness of fit of SARIMA models; and R2 was used for GAM/GAMM. 6798 CL cases were recorded during this time. The incidence had a seasonal pattern and the highest number of cases was recorded from August to October. In univariate SARIMA, (1,0,1) (0,1,1)12 was the best fit for predicting CL incidence (AIC=8.09, BIC=8.32). Time series regression (1,0,1) (0,1,1)12 showed that monthly mean humidity after 4-month lag was inversely related to CL incidence (AIC=8.53, BIC=8.66). GAMM results showed that average temperature with 2-month lag, average relative humidity with 3-month lag, monthly cumulative rainfall with 1-month lag, and monthly sunshine hours with 1-month lag were related to CL incidence (R2=0.94). The impact of meteorological variables on the incidence of CL is not linear and GAM models that include non-linear structures are a better fit for prediction. In Isfahan, Iran, meteorological variables can greatly predict the incidence of CL, and these variables can be used for predicting outbreaks.


Asunto(s)
Clima , Leishmaniasis Cutánea , Humanos , Humedad , Incidencia , Irán/epidemiología , Leishmaniasis Cutánea/epidemiología
9.
World Dev ; 1452021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34012190

RESUMEN

Food insecurity is a key global health challenge that is likely to be exacerbated by climate change. Though climate change is associated with an increased frequency of extreme weather events, little is known about how multiple environmental shocks in close succession interact to impact household health and well-being. In this paper, we assess how earthquake exposure followed by monsoon rainfall anomalies affect food insecurity in Nepal. We link food security data from the 2016 Nepal Demographic and Health Survey to data on shaking intensity during the 2015 Gorkha earthquake and rainfall anomalies during the 2015 monsoon season. We then exploit spatial variation in exposure to the earthquake and monsoon rainfall anomalies to isolate their independent and compound effects. We find that earthquake exposure alone was not associated with an increased likelihood of food insecurity, likely due in part to effective food aid distribution. However, the effects of rainfall anomalies differed by severity of earthquake exposure. Among households minimally impacted by the earthquake, low rainfall was associated with increased food insecurity, likely due to lower agricultural productivity in drought conditions. Among households that experienced at least moderate shaking, greater rainfall was positively associated with food insecurity, particularly in steep, mountainous areas. In these locations, rainfall events disproportionately increased landslides, which damaged roads, disrupted distribution of food aid, and destroyed agricultural land and assets. Additional research on the social impacts of compound environmental shocks is needed to inform adaptation strategies that work to improve well-being in the face of climate change.

10.
Int J Cancer ; 147(3): 866-875, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837000

RESUMEN

Although tobacco smoking, pan chewing and alcohol drinking are important risk factors for head and neck cancer (HNC), the HNC risks conferred by products available in Nepal for these habits are unknown. We assessed the associations of tobacco smoking, chewing habits, and alcohol drinking with HNC risk in Nepal. A case-control study was conducted in Nepal with 549 incident HNC cases and 601 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using unconditional logistic regression adjusting for potential confounders. We observed increased HNC risk for tobacco smoking (OR: 1.54; 95% CI: 1.14, 2.06), chewing habits (OR: 2.39; 95% CI: 1.77, 3.23), and alcohol drinking (OR: 1.57; 95% CI: 1.14, 2.18). The population attributable fraction (PAF) was 24.3% for tobacco smoking, 39.9% for chewing habits and 23.0% for alcohol drinking. Tobacco smoking, chewing habits, and alcohol drinking might be responsible for 85.3% of HNC cases. Individuals who smoked tobacco, chewed products and drank alcohol had a 13-fold increase in HNC risk (OR: 12.83; 95% CI: 6.91, 23.81) compared to individuals who did not have any of these habits. Both high frequency and long duration of these habits were strong risk factors for HNC among the Nepalese with clear dose-response trends. Preventive strategies against starting these habits and support for quitting these habits are necessary to decrease the incidence of HNC in Nepal.


Asunto(s)
Consumo de Bebidas Alcohólicas/epidemiología , Neoplasias de Cabeza y Cuello/epidemiología , Fumar Tabaco/epidemiología , Tabaco sin Humo/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Nepal/epidemiología , Oportunidad Relativa , Medición de Riesgo
11.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32769196

RESUMEN

As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting.IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.


Asunto(s)
Aeromonas/aislamiento & purificación , Riego Agrícola , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Estanques/microbiología , Ríos/microbiología , Riego Agrícola/métodos , Delaware , Estudios Longitudinales , Maryland , Microbiología del Agua
12.
Environ Res ; 172: 301-309, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30822564

RESUMEN

Irrigation with reclaimed water is increasing in areas that lack access to, and infrastructure for, high-level treatment and distribution. Antimicrobial residues are known to persist in conventionally treated reclaimed water, necessitating the investigation of reuse site-based mitigation options to further reduce these contaminants. We examined the effectiveness of a 50:50 volume/volume, particle matched, micro-scale zerovalent iron (ZVI)-sand filter in reducing concentrations of mixtures of antimicrobials present in pH-unadjusted conventionally treated reclaimed water. Twelve antimicrobials (azithromycin, ciprofloxacin, erythromycin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, tetracycline and vancomycin) were quantified using high performance-liquid chromatography-tandem mass spectrometry in reclaimed water, and ZVI-sand filtered reclaimed water, in a two-month long greenhouse-based experiment. Data were analyzed using a non-parametric rank-based approach. ZVI-sand filtration significantly reduced concentrations of azithromycin, ciprofloxacin, oxolinic acid, penicillin G, sulfamethoxazole, linezolid, pipemidic acid and vancomycin. Azithromycin, the antimicrobial with the highest median concentration (320 ng/L), was reduced to below the limit of detection after ZVI-sand filtration. Inorganic element (antimony, beryllium, cadmium, chromium, iron, lead, selenium and thallium) and water quality (free and total chlorine, nitrates, nitrites, pH and total dissolved solids) analyses showed that ZVI-sand filtered reclaimed water quality (nitrate, salinity, and inorganic elements) met the recommended guidelines for agricultural irrigation with reclaimed water. Based on our initial results, ZVI-sand filtration may be a promising basis for a point-of-use filtration system for reclaimed water irrigation on small-scale farms.


Asunto(s)
Antiinfecciosos , Filtración , Hierro , Contaminantes Químicos del Agua , Purificación del Agua , Agua , Riego Agrícola , Antiinfecciosos/aislamiento & purificación , Hierro/química , Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
13.
Environ Res ; 170: 122-127, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30579985

RESUMEN

The quality of irrigation water used to cultivate produce that is consumed raw is an important issue with regard to food safety. In this study, the microbiological quality of potential irrigation water sources in Arizona was evaluated by testing for the presence of indicator and pathogenic bacteria. Reclaimed water samples were collected from two wastewater treatment plants and return flow samples were collected from two drainage canals and one return flow pond. Standard membrane filtration methods were used for detection of indicator bacteria. Water samples (n = 28) were filtered through cellulose ester membrane filters and bacterial populations were enumerated by placing the filters on selective agar. For detection of pathogens (Salmonella enterica, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)), water samples were filtered through Modified Moore swabs and enriched in Universal Pre-enrichment Broth, followed by selective enrichment broth for each pathogen. The enriched broth was streaked onto agar media selective for each pathogen. Presumptive colonies were confirmed by PCR/real-time PCR. Among the 14 reclaimed water samples from two sites, the ranges of recovered populations of E. coli, total coliforms, and enterococci were 0-1.3, 0.5-8.3 × 103, and 0-5.5 CFU/100 mL, respectively. No L. monocytogenes, Salmonella or STEC were found. In the 13 return flow water samples from 3 sites, the ranges of recovered populations of E. coli, total coliforms and enterococci were 1.9-5.3 × 102, 6.5 × 102-9.1 × 104, and 2.9-3.7× 103 CFU/100 mL, respectively. All samples were negative for L. monocytogenes. One (7.1%) of the return flow samples was positive for E. coli O145. Nine (64.3%) of the samples were positive for Salmonella. Both real-time PCR and culture-based methods were used for the detection of Salmonella and L. monocytogenes, and the results from the two methods were comparable. The findings of this study provide evidence that irrigation waters in Arizona, including reclaimed water and return flows, could be potential sources of bacterial contamination of produce. Additional work is needed to evaluate whether bacteria present in irrigation water sources transfer to the edible portion of irrigated plants and are capable of persisting through post-harvest activities.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Microbiología del Agua , Contaminación del Agua/análisis , Arizona , Heces , Incidencia
14.
Environ Res ; 174: 1-8, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015109

RESUMEN

Agricultural water withdrawals account for the largest proportion of global freshwater use. Increasing municipal water demands and droughts are straining agricultural water supplies. Therefore, alternative solutions to agricultural water crises are urgently needed, including the use of nontraditional water sources such as advanced treated wastewater or reclaimed water, brackish water, return flows, and effluent from produce processing facilities. However, it is critical to ensure that such usage does not compromise soil, crop, and public health. Here, we characterized five different nontraditional water types (n = 357 samples) for the presence of pharmaceuticals, herbicides, and disinfectants using ultra-high-pressure liquid chromatography tandem mass spectrometry based method (UPLC-MS/MS). We then evaluated whether the levels of these contaminants were influenced by season. The highest level of herbicides (atrazine) was detected in untreated pond water (median concentration 135.9 ng/L). Reclaimed water had the highest levels of antibiotics and stimulants including azithromycin (215 ng/L), sulfamethoxazole (232.1 ng/L), and caffeine (89.4 ng/L). Produce processing plant water also tended to have high levels of atrazine (102.7 ng/L) and ciprofloxacin (80.1 ng/L). In addition, we observed seasonal variability across water types, with the highest atrazine concentrations observed during summer months, while the highest median azithromycin concentrations were observed in reclaimed water during the winter season. Further studies are needed to evaluate if economically feasible on-farm water treatment technologies can effectively remove such contaminants from nontraditional irrigation water sources.


Asunto(s)
Desinfectantes/análisis , Herbicidas/análisis , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Aguas Residuales , Agua
15.
Environ Res ; 147: 141-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26874046

RESUMEN

More than half of the global population relies on biomass fuels (wood, charcoal, crop residue, dung) for cooking and/or heating purposes. Household air pollution (HAP) resulting from the use of these solid fuels is of particular concern, given the overall prevalence as well as the intensity of exposure and the range of potential adverse health outcomes. Long term exposure to HAP is a major public health concern, particularly among women and children in low and middle income countries. In this study, we investigated the association between exposure to HAP resulting from combustion of biomass and lung cancer risk among Nepalese population. Using a hospital-based case-control study (2009-2012), we recruited 606 lung cancer cases and 606 healthy controls matched on age (±5 years), gender, and geographical residence. We used unconditional logistic regression to compute odds ratios (ORs) and 95% Confidence Intervals (95% CI) for lung cancer risk associated with HAP exposures, adjusting for potential confounders (tobacco use, TB status, SES, age, gender, ethnicity, and exposure to second hand smoke. In our overall analysis, we observed increased risk of lung cancer among those who were exposed to HAPs (OR: 1.77, 95% CI: 1.00-3.14). A more detailed analysis stratified by smoking status showed considerably higher risk of lung cancer associated with increasing duration of exposure to HAP from biomass combustion, with evidence of a borderline exposure-response relationship (Ptrend=0.05) that was more pronounced among never-smokers (Ptrend=0.01). Our results suggest that chronic exposure to HAP resulting from biomass combustion is associated with increased lung cancer risk, particularly among never-smokers in Nepal.


Asunto(s)
Contaminación del Aire Interior/efectos adversos , Neoplasias Pulmonares/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Biomasa , Estudios de Casos y Controles , Culinaria/estadística & datos numéricos , Femenino , Calefacción/estadística & datos numéricos , Vivienda , Humanos , Neoplasias Pulmonares/inducido químicamente , Masculino , Persona de Mediana Edad , Nepal/epidemiología , Factores de Riesgo , Adulto Joven
16.
Environ Res ; 149: 216-221, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27214137

RESUMEN

Consumption of contaminated poultry, raw milk and water are significant risk factors for Campylobacter infection. Previous studies also have investigated the association between weather (temperature and precipitation) and increased risk of campylobacteriosis, but limited information exists regarding the impacts of extreme heat and precipitation events on campylobacteriosis risk, and how such risk may differentially impact coastal communities. We obtained Campylobacter case data 2002-2012; n=4804) from the Maryland Foodborne Diseases Active Surveillance Network (FoodNet). We identified extreme heat and extreme precipitation events during this time (2002-2012) using location and calendar day specific thresholds (95th percentile for extreme heat and 90th percentile for extreme precipitation) that were computed based on a 30-year baseline (1960-1989). We linked these datasets using GIS and used negative binomial generalized estimating equations adjusted for demographic confounders to calculate the association between exposure to extreme events and risk of campylobacteriosis in Maryland. We observed that a one-day increase in exposure to extreme precipitation events was associated with a 3% increase in risk of campylobacteriosis in coastal areas of Maryland (Incidence Rate Ratio (IRR): 1.03, 95% confidence interval (CI): 1.01, 1.05), but such an association was not observed in noncoastal areas. Furthermore, the risk associated with extreme precipitation events was considerably higher during La Niña periods (IRR: 1.09, 95% CI: 1.05, 1.13), while there was no evidence of elevated risk during El Niño or ENSO Neutral periods. Exposure to extreme heat events was not associated with an increased risk of campylobacteriosis, except during La Niña periods (IRR: 1.04, 95% CI: 1.01, 1.08). Extreme precipitation events could result in flooding within coastal areas that may bring water contaminated with bacterial pathogens (originating from sources such as septic systems, municipal wastewater treatment plants and concentrated animal feeding operations) into close proximity with individuals, where frequency of contact may be higher.


Asunto(s)
Infecciones por Campylobacter/epidemiología , Campylobacter/aislamiento & purificación , El Niño Oscilación del Sur , Calor Extremo , Enfermedades Transmitidas por los Alimentos/epidemiología , Lluvia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones por Campylobacter/microbiología , Niño , Preescolar , Femenino , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Lactante , Recién Nacido , Masculino , Maryland/epidemiología , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
17.
Environ Health ; 15: 57, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117324

RESUMEN

BACKGROUND: Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012. METHODS: We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923). RESULTS: Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds. CONCLUSION: Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.


Asunto(s)
Asma/epidemiología , Calor Extremo/efectos adversos , Hospitalización/estadística & datos numéricos , Lluvia , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Maryland/epidemiología , Persona de Mediana Edad , Oportunidad Relativa , Riesgo , Adulto Joven
18.
Thorax ; 70(5): 433-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25758120

RESUMEN

BACKGROUND: Around 2.4 billion people use traditional biomass fuels for household cooking or heating. In 2006, the International Agency for Research on Cancer (IARC) concluded emissions from household coal combustion are a Group 1 carcinogen, while those from biomass were categorised as 2A due to epidemiologic limitations. This review updates the epidemiologic evidence and provides risk estimates for the 2010 Global Burden of Disease study. METHODS: Searches were conducted of 10 databases to July 2012 for studies of clinically diagnosed or pathologically confirmed lung cancer associated with household biomass use for cooking and/or heating. FINDINGS: Fourteen eligible studies of biomass cooking or heating were identified: 13 had independent estimates (12 cooking only), all were case-control designs and provided 8221 cases and 11 342 controls. The ORs for lung cancer risk with biomass for cooking and/or heating were OR 1.17 (95% CI 1.01 to 1.37) overall, and 1.15 (95% CI 0.97 to 1.37) for cooking only. Publication bias was not detected, but more than half the studies did not explicitly describe a clean reference category. Sensitivity analyses restricted to studies with adequate adjustment and a clean reference category found ORs of 1.21 (95% CI 1.05 to 1.39) for men (two reports, compiling five studies) and 1.95 (95% CI 1.16 to 3.27) for women (five reports, compiling eight studies). Exposure-response evidence was seen for men, and higher risk for women in developing compared with developed countries, consistent with higher exposures in the former. CONCLUSIONS: There is now stronger evidence for biomass fuel use causing lung cancer, but future studies need better exposure assessment to strengthen exposure-response evidence.


Asunto(s)
Biomasa , Culinaria , Fuentes Generadoras de Energía , Calefacción , Neoplasias Pulmonares/etiología , Contaminación del Aire Interior/efectos adversos , Femenino , Humanos , Masculino , Madera
19.
J Am Coll Radiol ; 21(2): 239-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043630

RESUMEN

Radiology is a major contributor to health care's impact on climate change, in part due to its reliance on energy-intensive equipment as well as its growing technological reliance. Delivering modern patient care requires a robust informatics team to move images from the imaging equipment to the workstations and the health care system. Radiology informatics is the field that manages medical imaging IT. This involves the acquisition, storage, retrieval, and use of imaging information in health care to improve access and quality, which includes PACS, cloud services, and artificial intelligence. However, the electricity consumption of computing and the life cycle of various computer components expands the carbon footprint of health care. The authors provide a general framework to understand the environmental impact of clinical radiology informatics, which includes using the international Greenhouse Gas Protocol to draft a definition of scopes of emissions pertinent to radiology informatics, as well as exploring existing tools to measure and account for these emissions. A novel standard ecolabel for radiology informatics tools, such as the Energy Star label for consumer devices or Leadership in Energy and Environmental Design certification for buildings, should be developed to promote awareness and guide radiologists and radiology informatics leaders in making environmentally conscious decisions for their clinical practice. At this critical climate juncture, the radiology community has a unique and pressing obligation to consider our shared environmental responsibility in innovating clinical technology for patient care.


Asunto(s)
Informática Médica , Radiología , Humanos , Inteligencia Artificial , Radiografía , Diagnóstico por Imagen
20.
Sci Rep ; 14(1): 10394, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710815

RESUMEN

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Asunto(s)
Disbiosis , Microbiota , Boca , ARN Ribosómico 16S , Tabaco sin Humo , Humanos , Tabaco sin Humo/efectos adversos , Masculino , Femenino , Disbiosis/microbiología , Adulto , ARN Ribosómico 16S/genética , Boca/microbiología , Saliva/microbiología , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fumadores , Adulto Joven , Fumar Cigarrillos/efectos adversos , Mucosa Bucal/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA