Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(6): e0053924, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38809043

RESUMEN

Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.


Asunto(s)
Antibacterianos , Bahías , Vibrio parahaemolyticus , Vibrio vulnificus , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/aislamiento & purificación , Vibrio vulnificus/efectos de los fármacos , Vibrio vulnificus/aislamiento & purificación , Vibrio vulnificus/crecimiento & desarrollo , Bahías/microbiología , Antibacterianos/farmacología , Estudios Longitudinales , Maryland , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Vibriosis/microbiología , Humanos
2.
Environ Res ; 244: 117940, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101724

RESUMEN

BACKGROUND: Vibrio spp. naturally occur in warm water with moderate salinity. Infections with non-cholera Vibrio (vibriosis) cause an estimated 80,000 illnesses and 100 fatalities each year in the United States. Climate associated changes to environmental parameters in aquatic ecosystems are largely promoting Vibrio growth, and increased incidence of vibriosis is being reported globally. However, vibriosis trends in the northeastern U.S. (e.g., Maryland) have not been evaluated since 2008. METHODS: Vibriosis case data for Maryland (2006-2019; n = 611) were obtained from the COVIS database. Incidence rates were calculated using U.S. Census Bureau population estimates for Maryland. A logistic regression model, including region, age group, race, gender, occupation, and exposure type, was used to estimate the likelihood of hospitalization. RESULTS: Comparing the 2006-2012 and 2013-2019 periods, there was a 39% (p = 0.01) increase in the average annual incidence rate (per 100,000 population) of vibriosis, with V. vulnificus infections seeing the greatest percentage increase (53%, p = 0.01), followed by V. parahaemolyticus (47%, p = 0.05). The number of hospitalizations increased by 58% (p = 0.01). Since 2010, there were more reported vibriosis cases with a hospital duration ≥10 days. Patients from the upper eastern shore region and those over the age of 65 were more likely (OR = 6.8 and 12.2) to be hospitalized compared to other patients. CONCLUSIONS: Long-term increases in Vibrio infections, notably V. vulnificus wound infections, are occurring in Maryland. This trend, along with increased rates in hospitalizations and average hospital durations, underscore the need to improve public awareness, water monitoring, post-harvest seafood interventions, and environmental forecasting ability.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Vibrio vulnificus , Estados Unidos/epidemiología , Humanos , Maryland/epidemiología , Incidencia , Ecosistema , Vibriosis/epidemiología , Agua
3.
Environ Res ; 220: 115205, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592812

RESUMEN

While an increasing number of studies have evaluated tobacco microbiomes, comparative microbiome analyses across diverse tobacco products are non-existent. Moreover, to our knowledge, no previous studies have characterized the metabolically-active (live) fraction of tobacco bacterial communities and compared them across products. To address these knowledge gaps, we compared bacterial communities across four commercial products (cigarettes, little cigars, cigarillos and hookah) and one research cigarette product. After total DNA extraction (n = 414) from all samples, the V3V4 region of the 16S rRNA gene was sequenced on the Illumina HiSeq platform. To identify metabolically-active bacterial communities within these products, we applied a coupled 5-bromo-2'-deoxyuridine labeling and sequencing approach to a subset of samples (n = 56). Each tobacco product was characterized by its signature microbiome, along with a shared microbiome across all tobacco products consisting of Pseudomonas aeruginosa, P. putida, P. alcaligenes, Bacillus subtilis, and Klebsiella pneumoniae. Comparing across products (using Linear discriminant analysis Effect Size (LEfSe)), a significantly higher (p < 0.05) relative abundance of Klebsiella and Acinetobacter was observed in commercial cigarettes, while a higher relative abundance of Pseudomonas and Pantoea was observed in research cigarettes. Methylorubrum and Paenibacillus were higher in hookah, and Brevibacillus, Lactobacillus, Bacillus, Lysinibacillus, and Staphylococcus were higher in little cigars and cigarillos. Across all products, the majority of the metabolically-active bacterial communities belonged to the genus Pseudomonas, followed by several genera within the Firmicutes phylum (Bacillus, Terribacillus, and Oceanobacillus). Identification of some metabolically-active pathogens such as Bacillus cereus and Haemophilus parainfluenzae in commercial products is of concern because of the potential for these microorganisms to be transferred to users' respiratory tracts via mainstream smoke. Future work is warranted to evaluate the potential impact of these tobacco bacterial communities on users' oral and lung microbiomes, which play such an important role on the spectrum from health to disease.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Microbiota , Productos de Tabaco , Nicotiana , Fumar , ARN Ribosómico 16S/genética , Productos de Tabaco/análisis , Bacterias/genética , Microbiota/genética , Pseudomonas
4.
Appl Environ Microbiol ; 88(15): e0083722, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862684

RESUMEN

Phylogenetic distribution and extended spectrum ß-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond (P < 0.01), freshwater river (P < 0.01) or brackish river (P < 0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance (P < 0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup (P < 0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected ß-lactam resistance genes were blaCMY-2 and blaTEM. Water type was a factor for blaCTX-M gene detection (P < 0.05). Phenotypic resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and ß-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum ß-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of ß-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Cefoxitina , Resistencia a las Cefalosporinas/genética , Cefalosporinas/farmacología , Infecciones por Escherichia coli/microbiología , Humanos , Filogenia , beta-Lactamasas/genética
5.
Environ Sci Technol ; 56(21): 15019-15033, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36194536

RESUMEN

Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.


Asunto(s)
Antibacterianos , Desinfectantes , Estados Unidos , ARN Ribosómico 16S/genética , Antibacterianos/farmacología , Estudios Longitudinales , Bacterias/genética , Farmacorresistencia Microbiana/genética , Agua , Riego Agrícola , Aguas Residuales , Genes Bacterianos
6.
J Appl Microbiol ; 133(2): 477-487, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396758

RESUMEN

AIMS: To evaluate the safety of irrigation water sources based on phenotypic antimicrobial resistance (AMR) in Enterococcus spp., a potential environmental reservoir for AMR determinants. METHODS AND RESULTS: Eleven sites representing fresh and brackish water rivers, ponds and reclaimed water, were sampled over 2 years. Samples (n = 333) yielded 198 unique isolates of Ent. faecalis and Ent. faecium which were tested for antimicrobial susceptibility by microbroth dilution. Species distribution was influenced by water type and season. Enterococcus faecalis was more likely found in freshwater rivers and in summer, and Ent. faecium in reclaimed water and in spring. Only 11% of isolates were pansusceptible, while 48.5% and 26.3% were single (SDR) and multidrug resistant (MDR), respectively. MDR was more likely detected in Ent. faecium than Ent. faecalis. Winter isolates were more likely than summer isolates to exhibit MDR than SDR. CONCLUSIONS: Enterococcus faecalis and Ent. faecium in surface and reclaimed water exhibited diverse phenotypic AMR and a low-level resistance to clinically important antimicrobials such as ampicillin, vancomycin and linezolid. SIGNIFICANCE AND IMPACT OF THE STUDY: Single and multidrug resistance in E. faecalis and E. faecium varied by season but not water type. Antimicrobial resistance prevalence can assist decisions on the safety of irrigation water sources for fresh produce crops.


Asunto(s)
Enterococcus faecalis , Enterococcus faecium , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Estaciones del Año
7.
Environ Res ; 212(Pt D): 113462, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35580667

RESUMEN

Multiple studies have demonstrated that cigarettes harbor bacterial pathogens. Yet, to our knowledge, there are no published data to date on whether or not these microorganisms can be aerosolized and transmitted to the respiratory tract of users. To address this knowledge gap, we characterized cigarette bacterial communities and evaluated whether or not they could be aerosolized in mainstream smoke. Filtered and unfiltered cigarettes were tested. Non-smoked tobacco leaf, enriched non-smoked tobacco leaf extract and enriched mainstream smoke extract samples (n = 144) were incubated on trypticase soy agar, and resulting bacterial colonies were sequenced. Total DNA was also extracted, followed by PCR amplification of the 16S rRNA gene, sequencing and analysis using UCHIME, QIIME and R packages. The predominant bacterial genera cultured from the mainstream smoke of unfiltered cigarettes were Bacillus, Terribacillus, Paenibacillus and Desulfotomaculum. Culturable bacteria were not recovered from the smoke of filtered products. However, sequencing data demonstrated no significant differences in bacterial community diversity in the smoke of filtered versus unfiltered cigarettes, suggesting that other non-culturable bacteria may be aerosolized in mainstream smoke as well. Our study provides novel evidence that tobacco-associated bacterial communities are viable, can be aerosolized in mainstream smoke, and could potentially be transferred to the oral cavity and respiratory tract of smokers.


Asunto(s)
Humo , Productos de Tabaco , Bacterias/genética , ARN Ribosómico 16S/genética , Humo/análisis , Nicotiana
8.
Environ Res ; 205: 112480, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863989

RESUMEN

The U.S. Food Safety Modernization Act (FSMA) Produce Safety Rule (PSR) requires that farmers generate a Microbial Water Quality Profile (MWQP) from 20 samples per agricultural water source, taken over 2-4 years and five annual samples thereafter. Farmers must use the MWQP to ascertain a geometric mean (GM) of ≤126 CFU/100 mL and statistical threshold value (STV) of ≤410 CFU/100 mL of generic Escherichia coli. Farmers are responsible for collecting samples and paying for testing, incurring a financial and time burden. To determine if testing frequency can be reduced without compromising accuracy, water samples (n = 279) were collected from twelve sites in the U.S. Mid-Atlantic region from 2016 to 2018 comprising tidal brackish river, non-tidal fresh river, pond, vegetable processing, and reclaimed water. The GM and STV were calculated for all sites and water types using all samples, and for multiple sub-samples of <20 from each site and water type. A Monte Carlo simulation was used to determine the proportion of sub-sample sizes that yielded the same determination as the entire sample size of PSR standard compliance. Four sites, two pond and two reclaimed water sites, complied with PSR GM and STV requirements when using the entire sample set. When a water source's calculated GM and STV using the entire sample set hovered close to the PSR thresholds, sub-sample sizes approached the recommended 20 samples to reach a congruent compliance determination. However, 99% agreement was obtained with a sub-sample of five when the absolute difference between the GM and STV from total samples and the PSR thresholds was ≥2.6 and 4.5 log CFU/100 mL E. coli, respectively. These findings suggest that under certain conditions the MWQP may be generated with well below 20 samples, reducing the economic burden on farmers while still maintaining a representative MWQP.


Asunto(s)
Riego Agrícola , Calidad del Agua , Escherichia coli , Inocuidad de los Alimentos , Microbiología del Agua
9.
Environ Res ; 204(Pt B): 112127, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34582801

RESUMEN

BACKGROUND: Typical thermoregulatory responses to elevated temperatures among healthy individuals include reduced blood pressure and perspiration. Individuals with end-stage kidney disease (ESKD) are susceptible to systemic fluctuations caused by ambient temperature changes that may increase morbidity and mortality. We investigated whether pre-dialysis systolic blood pressure (preSBP) and interdialytic weight gain (IDWG) can independently mediate the association between ambient temperature, all-cause hospital admissions (ACHA), and all-cause mortality (ACM). METHODS: The study population consisted of ESKD patients receiving hemodialysis treatments at Fresenius Medical Care facilities in Philadelphia County, PA, from 2011 to 2019 (n = 1981). Within a time-to-event framework, we estimated the association between daily maximum dry-bulb temperature (TMAX) and, as separate models, ACHA and ACM during warmer calendar months. Clinically measured preSBP and IDWG responses to temperature increases were estimated using linear mixed effect models. We employed the difference (c-c') method to decompose total effect models for ACHA and ACM using preSBP and IDWG as time-dependent mediators. Covariate adjustments for exposure-mediator and total and direct effect models include age, race, ethnicity, blood pressure medication use, treatment location, preSBP, and IDWG. We considered lags up to two days for exposure and 1-day lag for mediator variables (Lag 2-Lag 1) to assure temporality between exposure-outcome models. Sensitivity analyses for 2-day (Lag 2-only) and 1-day (Lag 1-only) lag structures were also conducted. RESULTS: Based on Lag 2- Lag 1 temporal ordering, 1 °C increase in daily TMAX was associated with increased hazard of ACHA by 1.4% (adjusted hazard ratio (HR), 1.014; 95% confidence interval, 1.007-1.021) and ACM 7.5% (adjusted HR, 1.075, 1.050-1.100). Short-term lag exposures to 1 °C increase in temperature predicted mean reductions in IDWG and preSBP by 0.013-0.015% and 0.168-0.229 mmHg, respectively. Mediation analysis for ACHA identified significant indirect effects for all three studied pathways (preSBP, IDWG, and preSBP + IDWG) and significant indirect effects for IDWG and conjoined preSBP + IDWG pathways for ACM. Of note, only 1.03% of the association between temperature and ACM was mediated through preSBP. The mechanistic path for IDWG, independent of preSBP, demonstrated inconsistent mediation and, consequently, potential suppression effects in ACHA (-15.5%) and ACM (-6.3%) based on combined pathway models. Proportion mediated estimates from preSBP + IDWG pathways achieved 2.2% and 0.3% in combined pathway analysis for ACHA and ACM outcomes, respectively. Lag 2 discrete-time ACM mediation models exhibited consistent mediation for all three pathways suggesting that 2-day lag in IDWG and preSBP responses can explain 2.11% and 4.41% of total effect association between temperature and mortality, respectively. CONCLUSION: We corroborated the previously reported association between ambient temperature, ACHA and ACM. Our results foster the understanding of potential physiological linkages that may explain or suppress temperature-driven hospital admissions and mortality risks. Of note, concomitant changes in preSBP and IDWG may have little intermediary effect when analyzed in combined pathway models. These findings advance our assessment of candidate interventions to reduce the impact of outdoor temperature change on ESKD patients.


Asunto(s)
Fallo Renal Crónico , Diálisis Renal , Hospitalización , Hospitales , Humanos , Fallo Renal Crónico/terapia , Temperatura
10.
Appl Microbiol Biotechnol ; 106(17): 5785-5795, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35927334

RESUMEN

Young adults are increasingly using non-cigarette products, such as hookahs, since they are perceived as healthier alternatives to cigarette smoking. However, hookah users are exposed to not only carcinogenic compounds but also microorganisms that may play an active role in the development of both infectious and chronic diseases among users. Nevertheless, existing hookah research in this area has focused only on microorganisms that may be transferred to users through the smoking apparatus and not on bacterial communities associated with hookah tobacco. To address this knowledge gap, we conducted time-series experiments on commercially available hookah brands (Al Fakher (flavors: two apple, mint, and watermelon) and Fumari (flavors: white gummy bear, ambrosia, and mint chocolate chill)) stored under three different temperature and relative humidity conditions over 14 days. To characterize bacterial communities, the total DNA was extracted on days 0, 5, 9, and 14, PCR-amplified for the V3V4 region of the bacterial 16S rRNA gene, sequenced on the Illumina HiSeq platform, and analyzed using R. Diversity (alpha and beta) analyses revealed that the microbiotas of Fumari and Al Fakher products differed significantly and that flavor had a significant effect on the hookah microbiota. Overall, Pseudomonas, Bacillus, Sphingomonas, and Methylobacterium were the predominant bacterial taxa across all products. Additionally, we observed compositional differences between hookah brands across the 14-day incubation. These data suggest that the bacterial communities of hookah tobacco are diverse and differ across brands and flavors, which may have critical implications regarding exposures to specific bacteria among hookah users. KEY POINTS: • Commercial hookah products harbor diverse bacterial communities. • Brands and flavors impact the diversity of these communities. • Research on their viability and transmission to users' respiratory tracts is needed.


Asunto(s)
Pipas de Agua , Productos de Tabaco , Bacterias , Humanos , ARN Ribosómico 16S , Nicotiana , Adulto Joven
11.
Appl Environ Microbiol ; 87(13): e0021121, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893119

RESUMEN

Enteric viruses (EVs) are the largest contributors to foodborne illnesses and outbreaks globally. Their ability to persist in the environment, coupled with the challenges experienced in environmental monitoring, creates a critical aperture through which agricultural crops may become contaminated. This study involved a 17-month investigation of select human EVs and viral indicators in nontraditional irrigation water sources (surface and reclaimed waters) in the Mid-Atlantic region of the United States. Real-time quantitative PCR was used for detection of Aichi virus, hepatitis A virus, and norovirus genotypes I and II (GI and GII, respectively). Pepper mild mottle virus (PMMoV), a common viral indicator of human fecal contamination, was also evaluated, along with atmospheric (air and water temperature, cloud cover, and precipitation 24 h, 7 days, and 14 days prior to sample collection) and physicochemical (dissolved oxygen, pH, salinity, and turbidity) data, to determine whether there were any associations between EVs and measured parameters. EVs were detected more frequently in reclaimed waters (32% [n = 22]) than in surface waters (4% [n = 49]), similar to PMMoV detection frequency in surface (33% [n = 42]) and reclaimed (67% [n = 21]) waters. Our data show a significant correlation between EV and PMMoV (R2 = 0.628, P < 0.05) detection levels in reclaimed water samples but not in surface water samples (R2 = 0.476, P = 0.78). Water salinity significantly affected the detection of both EVs and PMMoV (P < 0.05), as demonstrated by logistic regression analyses. These results provide relevant insights into the extent and degree of association between human (pathogenic) EVs and water quality data in Mid-Atlantic surface and reclaimed waters, as potential sources for agricultural irrigation. IMPORTANCE Microbiological analysis of agricultural waters is fundamental to ensure microbial food safety. The highly variable nature of nontraditional sources of irrigation water makes them particularly difficult to test for the presence of viruses. Multiple characteristics influence viral persistence in a water source, as well as affecting the recovery and detection methods that are employed. Testing for a suite of viruses in water samples is often too costly and labor-intensive, making identification of suitable indicators for viral pathogen contamination necessary. The results from this study address two critical data gaps, namely, EV prevalence in surface and reclaimed waters of the Mid-Atlantic region of the United States and subsequent evaluation of physicochemical and atmospheric parameters used to inform the potential for the use of indicators of viral contamination.


Asunto(s)
Riego Agrícola , Enterovirus/aislamiento & purificación , Tobamovirus/aislamiento & purificación , Contaminantes del Agua/análisis , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Mid-Atlantic Region , Oxígeno/análisis , Salinidad , Microbiología del Agua , Contaminación del Agua/análisis
12.
Environ Health ; 20(1): 105, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537076

RESUMEN

BACKGROUND: Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. METHODS: To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. RESULTS: We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. CONCLUSIONS: Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.


Asunto(s)
Cambio Climático , Clima Extremo , Enfermedades Transmitidas por los Alimentos/epidemiología , Infecciones por Salmonella/epidemiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Monitoreo Epidemiológico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Riesgo , Estados Unidos , Adulto Joven
13.
Appl Microbiol Biotechnol ; 105(10): 4241-4253, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977338

RESUMEN

Previous studies have characterized bacterial communities in menthol versus non-menthol cigarettes. However, these studies evaluated commercial cigarettes, for which levels of chemical constituents are largely unknown, and therefore, could not assess the impact of varying nicotine and menthol concentrations on tobacco bacterial communities. To address this knowledge gap, we performed time-series experiments using SPECTRUM research cigarettes with varying nicotine and menthol levels. Cigarettes were incubated under three storage conditions for 14 days. Cigarette tobacco was then sub-sampled (n = 288), DNA extracted, and subjected to PCR amplification of the V3V4 region of the 16S rRNA gene, followed by Illumina HiSeq sequencing. Sequences were analyzed using QIIME and R. Incubation under varying conditions did not affect bacterial diversity. However, significant differences in bacterial communities were observed across varying nicotine concentrations in menthol and non-menthol products. For example, Pseudomonas spp. was negatively correlated with nicotine concentrations in menthol cigarettes. A significantly higher relative abundance of P. veronii and P. viridiflava was observed in menthols versus non-menthols, while a significantly higher relative abundance of Bacillus foraminis and B. coagulans was found in non-menthols versus menthols. Additional bacteria (e.g., Staphylococcus spp., Jeotgalicoccus psychrophilus, and B. flexus) significantly changed in relative abundance between days 0 and 14. Our findings demonstrate that nicotine and menthol levels have a significant impact on the relative abundance of potential bacterial pathogens present in cigarettes. Future work is needed to demonstrate whether these tobacco-associated bacteria could be transferred to users while smoking, ultimately contributing to adverse respiratory impacts. KEY POINTS: • Varying nicotine levels changes bacterial composition of research cigarettes. • Mentholation affects the tobacco bacterial microbiome. • SPECTRUM research cigarettes are dominated by Pseudomonas and Bacillus.


Asunto(s)
Nicotina , Productos de Tabaco , Bacillus , Bacterias/genética , ARN Ribosómico 16S/genética , Staphylococcaceae
14.
Appl Microbiol Biotechnol ; 105(7): 2633-2645, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33704513

RESUMEN

Tobacco smoking is still the leading cause of preventable diseases and death in the USA and throughout the globe. Under Section 904(a)(3) of the US Federal Food, Drug, and Cosmetic Act, tobacco manufacturing companies need to report on quantities of harmful and potentially harmful constituents (HPHCs) in all tobacco products. While the extensive HPHC list of 2012 includes 93 chemicals, which are categorized as carcinogenic, respiratory, cardiovascular, or reproductive toxicants or addictive compounds, it fails to include microorganisms (bacteria and fungi) that have been shown to contribute to adverse health outcomes among tobacco users. Nevertheless, over the last 50 years, researchers have studied microorganisms in a variety of tobacco products using both culture-based and culture-independent techniques. In this mini-review, we provide an overview of this body of research, detailing the bacterial and fungal microbiomes residing in commercial tobacco products. Overall, studies have characterized over 89 unique bacterial genera and 19 fungal genera in cigarettes, cigars, cigarillos, hookah, and smokeless tobacco. The most predominant bacterial genera are Bacillus, Pseudomonas, and Staphylococcus. Fungal genera identified have included Aspergillus, Penicillium, Mucor, Alternaria, Cladosporium, Streptomyces, and Candida, to name a few. While some of the identified microorganisms are known human pathogens, others are potential opportunistic pathogens. Given the vast array of microorganisms that are present across diverse types of tobacco products, future research should be focused on the viability of these microorganisms, as well as their ability to transfer to the user's respiratory tract, potentially contributing to adverse health outcomes. KEY POINTS: • Commercial tobacco products harbor diverse bacterial and fungal communities. • Some of these microorganisms are known or opportunistic human pathogens. • Research on their viability and transmission to users' respiratory tracts is needed.


Asunto(s)
Microbiota , Productos de Tabaco , Tabaco sin Humo , Bacterias , Humanos , Nicotiana
15.
J Environ Manage ; 297: 113234, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34351302

RESUMEN

Water scarcity has resulted in extensive wastewater recycling for agricultural irrigation in both Israel and the Palestinian Territories. However, minimal data have been collected regarding perceptions about wastewater recycling between the populations in these two areas. While geographically close and economically linked, these two populations differ in terms of governance, income, and access to technology for wastewater recycling. To address the data gap pertaining to perceptions of wastewater recycling, a survey was administered among a convenience sample of subjects (n = 236) recruited from Eilat, Israel and Bethlehem, West Bank, from May to November 2018. The survey included questions addressing knowledge of water sources, water scarcity, and recycled water; willingness to use recycled water for produce irrigation and household tasks; and demographics. Israeli willingness to use recycled water for various purposes ranged from 8.3% to 55.1%, and more than half of Israeli respondents were willing to serve both raw and cooked produce irrigated with recycled water. Willingness to use recycled water ranged from 28.9% to 41.7% among the Palestinian respondents, and Palestinian respondents were more willing to engage in high-contact uses (i.e. drinking and cooking) than Israeli respondents. Among the Israeli respondents, experience or familiarity with wastewater recycling and water contamination were frequently significantly associated with willingness to use recycled water. In contrast, among Palestinian respondents, personal water contamination experience, home water safety testing, and trust in authorities to monitor recycled wastewater reuse were frequently significantly associated with willingness to use recycled water. Given the likely increasing water stress in both Israel and the Palestinian Territories, as well as the continued evolution of wastewater treatment technologies and the substantial amount of agricultural trade ongoing between Israel and the Palestinian Territories, it is important to identify effective and appropriate outreach and communication strategies to enable successful and acceptable water recycling.


Asunto(s)
Árabes , Agua , Riego Agrícola , Humanos , Percepción , Aguas Residuales/análisis
16.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32769196

RESUMEN

As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting.IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.


Asunto(s)
Aeromonas/aislamiento & purificación , Riego Agrícola , Enterococcus/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Estanques/microbiología , Ríos/microbiología , Riego Agrícola/métodos , Delaware , Estudios Longitudinales , Maryland , Microbiología del Agua
17.
Environ Res ; 188: 109777, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599390

RESUMEN

Treating and reusing greywater for agricultural irrigation is becoming increasingly prevalent in water-scarce regions such as the Middle East. However, the potential for antibiotic-resistant bacteria to be introduced into food systems or the environment via greywater reuse is a potential area of concern. It is known that off-grid treated greywater often has elevated levels of bacteria, however, little is known regarding the prevalence of antibiotic-resistant bacteria in this water source. To address this knowledge gap, samples (n = 61) of off-grid, household greywater (influent), treated greywater effluent, and irrigation pond water were collected between October 2017 and June 2018 from four farms in the West Bank, Palestinian Territories. Samples were tested for pH, turbidity, dissolved oxygen, electrical conductivity, and oxidation reduction potential. Standard membrane filtration was used to enumerate presumptive Escherichia coli, and isolates (n = 88) were purified, confirmed using 16S rRNA sequencing, and subjected to antimicrobial susceptibility testing using microbroth dilution. The majority of influent (76.5%) and effluent (70.6%) samples had detectable presumptive E. coli. Interestingly, the majority of the isolates were confirmed as Klebsiella sp. (n = 37), followed by E. coli (n = 32), and the remainder were classified as other Enterobacteriaceae (n = 19). A higher percentage of effluent isolates were fully susceptible to all tested antibiotics when compared to influent isolates (28.6% vs 18.6%). Resistance was most commonly observed against ampicillin (69.3% of all isolates), trimethoprim-sulfamethoxazole (11.4%), tetracycline (9.1%), and cefazolin (7.9%), and 7.9% of isolates were observed to be multidrug-resistant. While most water quality parameters were within Israeli and Palestinian wastewater reuse requirements, E. coli levels in effluent violated available standards. These findings suggest that, despite observed decreases in bacteria and an overall decrease in isolates expressing antibiotic resistance from influent to effluent, off-grid greywater treatment systems are still a potential source of both susceptible and antibiotic-resistant bacteria in the agricultural environment.


Asunto(s)
Escherichia coli , Klebsiella , Riego Agrícola , Antibacterianos/farmacología , Árabes , Escherichia coli/genética , Humanos , Medio Oriente , Estanques , ARN Ribosómico 16S , Aguas Residuales
18.
Environ Res ; 188: 109773, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32559686

RESUMEN

Campylobacter is a leading cause of bacterial foodborne illness in the United States. Campylobacter infections have most often been associated with food-related risk factors, such as the consumption of poultry and raw milk. Socioeconomic, agricultural and environmental factors, including drinking water source, can also influence the risk of campylobacteriosis. Approximately 19% of Maryland residents rely on private wells as their sole source of water. Given that the federal Safe Drinking Water Act does not regulate the water quality of private wells, these could be important non-foodborne transmission pathways for Campylobacter. To address this issue, data on the number of culture-confirmed cases of Campylobacter infection in Maryland between 2007 and 2016 were obtained from the Foodborne Diseases Active Surveillance Network. Cases were linked by zip code with data from the Maryland well permits registry, the 2010 U.S. Census, the 2016 American Community Survey, and the USDA Agricultural Census. Campylobacteriosis incidence rates and well prevalence were calculated by zip code. Negative binomial regression models were then constructed to evaluate the association between the prevalence of private wells, presence/absence of animal feeding operations and the incidence of campylobacteriosis across the physiographic provinces in Maryland. From 2007 to 2016, a total of 5746 cases of campylobacteriosis were reported in Maryland, and annual incidence rates ranged from 6.65 to 11.59 per 100,000 people. In our statewide analysis, a significant positive association was observed between well prevalence and increased campylobacteriosis incidence at the zip code level (Incidence Rate Ratio (IRR) = 1.35, 95% Confidence Interval (CI) = 1.11, 1.63). A significant positive association was also observed between well prevalence and increased campylobacteriosis incidence in the Appalachian and Coastal provinces of Maryland (IRR = 2.94, 95% CI = 1.11, 7.76 and IRR = 1.70, 95% CI = 1.25, 2.31, respectively). The presence of broiler chicken operations, increasing median age and percentage of residents living in poverty were also significantly associated with campylobacteriosis incidence at the zip code level in some physiographic provinces in Maryland. To our knowledge, these are the first US data to demonstrate an association between prevalence of private wells and campylobacteriosis incidence at the zip code level.


Asunto(s)
Infecciones por Campylobacter , Campylobacter , Agua Potable , Enfermedades Transmitidas por los Alimentos , Animales , Infecciones por Campylobacter/epidemiología , Pollos , Enfermedades Transmitidas por los Alimentos/epidemiología , Humanos , Incidencia , Maryland/epidemiología , Estados Unidos/epidemiología , Espera Vigilante
19.
Appl Microbiol Biotechnol ; 104(14): 6287-6297, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32448997

RESUMEN

Bacterial communities are integral constituents of tobacco products. They originate from tobacco plants and are acquired during manufacturing processes, where they play a role in the production of tobacco-specific nitrosamines. In addition, tobacco bacterial constituents may play an important role in the development of infectious and chronic diseases among users. Nevertheless, tobacco bacterial communities have been largely unexplored, and the influence of tobacco flavor additives such as menthol (a natural antimicrobial) on tobacco bacterial communities is unclear. To bridge this knowledge gap, time series experiments including 5 mentholated and non-mentholated commercially available cigarettes-Marlboro red (non-menthol), Marlboro menthol, Newport menthol box, Newport menthol gold, and Newport non-menthol-were conducted. Each brand was stored under three different temperature and relative humidity conditions. To characterize bacterial communities, total DNA was extracted on days 0 and 14. Resulting DNA was purified and subjected to PCR of the V3V4 region of the 16S rRNA gene, followed by sequencing on the Illumina HiSeq platform and analysis using the QIIME, phyloseq, metagenomeSeq, and DESeq software packages. Ordination analyses showed that the bacterial community composition of Marlboro cigarettes was different from that of Newport cigarettes. Additionally, bacterial profiles significantly differed between mentholated and non-mentholated Newports. Independently of storage conditions, tobacco brands were dominated by Proteobacteria, with the most dominant bacterial genera being Pseudomonas, unclassified Enterobacteriaceae, Bacillus, Erwinia, Sphingomonas, Acinetobacter, Agrobacterium, Staphylococcus, and Terribacillus. These data suggest that the bacterial communities of tobacco products differ across brands and that mentholation of tobacco can alter bacterial community composition of select brands. KEY POINTS: • Bacterial composition differed between the two brands of cigarettes. • Mentholation impacts cigarette microbiota. • Pseudomonas and Bacillus dominated the commercial cigarettes. Graphical abstract.


Asunto(s)
Bacterias/efectos de los fármacos , Aromatizantes/farmacología , Mentol/farmacología , Microbiota/efectos de los fármacos , Productos de Tabaco/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Aromatizantes/análisis , Mentol/análisis , ARN Ribosómico 16S/genética , Nicotiana/microbiología , Productos de Tabaco/análisis
20.
Environ Res ; 171: 576-580, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30477872

RESUMEN

Climate change and population growth are contributing to a growing global freshwater crisis that is exacerbating agricultural water scarcity and compromising food security and public health. In light of these challenges, the increased reliance on nontraditional irrigation water sources, such as reclaimed or recycled water, is emerging as a potentially viable strategy to address water and food insecurity worldwide. This editorial provides an overview of the global need for agricultural water reuse and outlines the environmental and public health impacts associated with this practice. Policy implications, including an emphasis on "One Water" approaches, are discussed. Finally, the editorial leads off a Special Issue that includes a collection of articles reporting on the initial research and extension/outreach findings of CONSERVE: A Center of Excellence at the Nexus of Sustainable Water Reuse, Food and Health, funded by the U.S. Department of Agriculture, National Institute of Food and Agriculture. Taken together, this compilation of articles addresses the overarching theme that transdisciplinary teams are key with regard to moving the science of agricultural water reuse forward to achieve water and food security and advance public health in a changing climate.


Asunto(s)
Cambio Climático , Conservación de los Recursos Hídricos/métodos , Abastecimiento de Alimentos , Agua , Agricultura , Salud Pública , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA