Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neurobiol Dis ; 159: 105485, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411704

RESUMEN

Fragile X Syndrome (FXS) is caused by silencing the FMR1 gene which results in intellectual disability, hyperactivity, sensory hypersensitivity, autistic-like behavior, and susceptibility to seizures. This X-linked disorder is also associated with reduced cAMP levels in humans as well as animal models. We assessed the therapeutic and neurochemical effects of chronic administration of the phosphodiesterase-4D negative allosteric modulator, BPN14770, in a mouse model of FXS (Fmr1 KO). Groups of male Fmr1 KO mice and control littermates were treated with dietary BPN14770 commencing postnatal day 21. A dose-response effect was investigated. At 90 days of age, mice underwent behavior tests including open field, novel object recognition, three chambered sociability and social novelty tests, passive avoidance, and sleep duration analysis. These tests were followed by in vivo measurement of regional rates of cerebral protein synthesis (rCPS) with the autoradiographic L-[1-14C]leucine method. BPN14770 treatment had positive effects on the behavioral phenotype in Fmr1 KO mice. Some effects such as increased sleep duration and increased social behavior occurred in both genotypes. In the open field, the hyperactivity response in Fmr1 KO mice was ameliorated by BPN14770 treatment at low and intermediate doses. BPN14770 treatment tended to increase rCPS in a dose-dependent manner in WT mice, whereas in Fmr1 KO mice effects on rCPS were less apparent. Results indicate BPN14770 treatment improves some behavior in Fmr1 KO mice. Results also suggest a genotype difference in the regulation of translation via a cAMP-dependent pathway.


Asunto(s)
Conducta Animal , Cerebro , Síndrome del Cromosoma X Frágil , Inhibidores de Fosfodiesterasa 4 , Biosíntesis de Proteínas , Sueño , Animales , Ratones , Regulación Alostérica , Autorradiografía , Conducta Animal/efectos de los fármacos , Cerebro/efectos de los fármacos , Cerebro/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Noqueados , Inhibidores de Fosfodiesterasa 4/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Sueño/efectos de los fármacos , Conducta Social
2.
Neurobiol Dis ; 148: 105213, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33276083

RESUMEN

SHANK3 is a postsynaptic scaffolding protein that plays a critical role in synaptic development and brain function. Mutations in SHANK3 are implicated in Phelan-McDermid syndrome (PMS), a neurodevelopmental disorder characterized by autistic-like behavior, delayed speech, hypotonia, and intellectual disability (ID). Moreover, mutations in SHANK3 occur in 1-2% of cases of idiopathic autism spectrum disorder (ASD). In fragile X syndrome (FXS), a syndromic form of autism, SHANK3 is one of the 842 targets of fragile X mental retardation protein (FMRP), the protein product of the silenced FMR1 gene. FXS is likely a primary disorder of the regulation of translation, whereas other syndromic forms of ASD/ID, e.g. PMS, appear to be primary disorders of synaptic structure. In this study, we asked if a knockout of the synaptic protein, Shank3, is linked to an effect on translation. Specifically, we measured the effect of Shank3 loss on rates of cerebral protein synthesis (rCPS) in vivo by means of the L-[1-14C]leucine quantitative autoradiographic method. We found that Shank3 knockout mice had significantly increased rCPS in every brain region examined. Our results suggest a link in ASD/ID between synaptic structure and regulation of translation.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Discapacidad Intelectual/metabolismo , Biosíntesis de Proteínas/genética , Animales , Trastorno del Espectro Autista/genética , Autorradiografía , Radioisótopos de Carbono , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/metabolismo , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 22/metabolismo , Modelos Animales de Enfermedad , Discapacidad Intelectual/genética , Leucina/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Sinaptosomas/metabolismo
3.
J Neurochem ; 145(5): 417-425, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29364507

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant neurogenetic disorder affecting about 1 in 6000 people and is caused by mutations in either TSC1 or TSC2. This disorder is characterized by increased activity of mammalian target of rapamycin complex 1 (mTORC1), which is involved in regulating ribosomal biogenesis and translation initiation. We measured the effects of Tsc2 haploinsufficiency (Tsc2+/- ) in 3-month-old male mice on regional rates of cerebral protein synthesis (rCPS) by means of the in vivo L-[1-14 C]leucine method. This quantitative autoradiographic method includes an estimate of the integrated specific activity of the tracer amino acid in brain tissue. The estimate accounts for recycling of unlabeled amino acids from tissue protein breakdown by means of a factor (λ) that was determined in control and Tsc2+/- mice. The value of λ was higher in Tsc2+/- mice, indicating that a greater fraction of leucine in the tissue precursor pool for protein synthesis is derived from the plasma compared to controls, consistent with reduced rates of protein degradation. We determined rCPS in freely moving, awake male Tsc2+/- and control mice, and we used the determined values of λ in the calculation of rCPS. Unexpectedly, we found that rCPS were significantly decreased in 16 of the 17 brain regions analyzed in Tsc2+/- mice compared to controls. Our results indicate a complex role of mTORC1 in the regulation of cerebral protein synthesis that has not been previously recognized.


Asunto(s)
Encéfalo/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas/fisiología , Esclerosis Tuberosa/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
Front Neurosci ; 16: 811528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720683

RESUMEN

Many patients with fragile X syndrome (FXS) have sleep disturbances, and Fmr1 knockout (KO) mice (a model of FXS) have reduced sleep duration compared to wild type (WT). Sleep is important for brain development, and chronic sleep restriction during development has long-lasting behavioral effects in WT mice. We hypothesized that the sleep abnormalities in FXS may contribute to behavioral impairments and that increasing sleep duration might improve behavior. We treated adult male Fmr1 KO and WT mice subacutely with three different classes of hypnotics (DORA-22, ramelteon, and zolpidem) and caffeine, a methylxanthine stimulant, and we tested the effects of treatments on sleep duration and behavior. Behavior tests included activity response to a novel environment, anxiety-like behavior, and social behavior. As expected, all hypnotics increased, and caffeine decreased sleep duration in the circadian phase in which drugs were administered. Caffeine and DORA-22 treatment significantly reduced activity in the open field regardless of genotype. Other effects were not as apparent.

5.
eNeuro ; 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851298

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that results in intellectual disability and, in ∼50% of patients, autism spectrum disorder. The protein products that are altered in TSC (TSC1 and TSC2) form a complex to inhibit the mammalian target of rapamycin [mTOR; mTOR complex 1 (mTORC1)] pathway. This pathway has been shown to affect the process of mRNA translation through its action on ribosomal protein S6 and 4-elongation binding protein 1. It is thought that mutations in the TSC proteins lead to upregulation of the mTORC1 pathway and consequently an increase in protein synthesis. Unexpectedly, our previous study of a mouse model of TSC (Tsc2Djk +/) demonstrated decreased in vivo rates of protein synthesis throughout the brain. In the present study, we confirm those results in another Tsc2+/- mouse model, one with a different mutation locus and on a mixed background (Tsc2Mjg +/-). We also examine mTORC1 signaling and possible effects of prior isoflurane anesthesia. Because measurements of protein synthesis rates in vivo require surgical preparation of the animal and anesthesia, we examine mTORC1 signaling pathways both under baseline conditions and following recovery from anesthesia. Our results demonstrate regionally selective effects of prior anesthesia. Overall, our results in both in vivo models suggest differences to the central hypothesis regarding TSC and show the importance of studying protein synthesis in vivo Significance StatementProtein synthesis is an important process for brain function. In the disorder, tuberous sclerosis complex (TSC), the inhibition of the mammalian target of rapamycin (mTOR) pathway is reduced and this is thought to lead to excessive protein synthesis. Most studies of protein synthesis in models of TSC have been conducted in vitro We report here confirmation of our previous in vivo study showing decreased brain protein synthesis rates in a second mouse model of TSC, results counter to the central hypothesis regarding TSC. We also explore the possible influence of prior isoflurane exposure on signaling pathways involved in regulation of protein synthesis. This study highlights a novel aspect of TSC and the importance of studying cellular processes in vivo.

6.
Brain Sci ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924037

RESUMEN

Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.

7.
Autism Res ; 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32964679

RESUMEN

Sleep problems are prevalent in people with autism spectrum disorder (ASD). Several studies have shown an association between sleep problems and severity of ASD-related behaviors. Most of these studies have not addressed potential sex differences either in the prevalence of the sleep problems or in their association with the manifestation of other behavioral issues in ASD. Given the strong prevalence of ASD in males, we thought it important to address whether sex differences exist in this realm. We examined the association of sleep problems with the severity of ASD-behavioral measures in a large data set collected from an online phenotyping project: Simons Foundation Powering Autism Research for Knowledge. We confirmed a high prevalence of sleep problems in ASD and a strong association between sleep problems and severity of other ASD-related behaviors. Furthermore, we were able to detect sex differences in these associations. In children with ASD, there was a slightly stronger association between repetitive behaviors and diagnosed sleep problems in females compared to males. In children without diagnosed ASD (undiagnosed siblings), there was a stronger association between sleep problems and impairments in social communication in males compared to females. These data highlight potential sex differences in the association of sleep problems and behavioral problems in ASD. LAY SUMMARY: We tested for sex differences in the association between sleep deficiencies and behavior in autism spectrum disorder (ASD). In children with ASD, we found the association between sleep problems and repetitive behaviors was slightly stronger in females. In siblings without diagnosed ASD, the association between sleep problems and social communication scores was stronger in males. These data suggest that sex might play a role in an association between sleep deficiencies and behavioral impairments.

8.
Brain Sci ; 11(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396736

RESUMEN

Sleep abnormalities are common in patients with neurodevelopmental disorders, and it is thought that deficits in sleep may contribute to the unfolding of symptoms in these disorders. Appreciating sleep abnormalities in neurodevelopmental disorders could be important for designing a treatment for these disorders. We studied sleep duration in three mouse models by means of home-cage monitoring: Tsc2+/- (tuberous sclerosis complex), oxytocin receptor (Oxtr) knockout (KO) (autism spectrum disorders), and Shank3 e4-9 KO (Phelan-McDermid syndrome). We studied both male and female mice, and data were analyzed to examine effects of both genotype and sex. In general, we found that female mice slept less than males regardless of genotype or phase. We did not find any differences in sleep duration in either Tsc2+/- or Oxtr KO mice, compared to controls. In Shank3 e4-9 KO mice, we found a statistically significant genotype x phase interaction (p = 0.002) with a trend that Shank3e4-9 KO mice regardless of sex slept more than control mice in the active phase. Our results have implications for the management of patients with Phelan-McDermid syndrome.

9.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32303566

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that is caused by a mutation in either TSC1 or TSC2 TSC affects multiple systems of the body, and patients with TSC display a range of neurologic and behavioral manifestations including seizures, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder, anxiety, and mood disorders. Whereas behavioral phenotypes of many mouse models have been studied, the effects of sex have, for the most part, not been explored. We studied adult male and female Tsc2 heterozygous and control mice to investigate the influence of sex and genotype on behavior. On a test of social preference, Tsc2 heterozygous mice, regardless of sex, demonstrated lower preference for the stranger mouse than control mice. In the open field, Tsc2 heterozygous males and control females habituated to the open field with decreasing anxiety-like behavior over time, whereas Tsc2 heterozygous females did not show habituation to the open field environment. We did not find any statistically significant effects of genotype on open field activity, learning and memory or motor function. Our results highlight phenotype differences in Tsc2 heterozygous mice, some of which are influenced by sex. A consideration of how sex influences the behavioral phenotypes of TSC is critical to develop a more complete understanding of the disorder and better target future pharmacological treatments.


Asunto(s)
Esclerosis Tuberosa , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Genotipo , Humanos , Masculino , Ratones , Fenotipo , Factores Sexuales , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
10.
Front Neurosci ; 14: 601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612506

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in cognitive decline. A unique rat model, TgF344-AD, recapitulates pathological hallmarks of AD. We used a longitudinal design to address the timing of expression of behavioral phenotypes in male and female TgF344-AD rats. In both sexes, we confirmed an age-dependent buildup of amyloid-ß. In the open field, female, but not male, TgF344-AD rats were hypoactive at 6 and 12 months of age but at 18 months the two genotypes were similar in levels of activity response. Both male and female TgF344-AD rats had a deficit in performance on a learning and memory task. Male TgF344-AD, but not female, rats had evidence of hyposmia regardless of age. Rest-activity rhythms followed the typical active/inactive phase in all rats regardless of genotype or age. In males, home cage activity was similar across age and genotype; in females, regardless of genotype animals were less active as they aged. These changes highlight some behavioral markers of disease in the rat model. Early markers of disease may be important in early diagnosis and assessment of efficacy when treatment becomes available.

11.
Brain Sci ; 9(1)2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30654445

RESUMEN

Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene leading to loss of the protein product fragile X mental retardation protein (FMRP). FXS is the most common monogenic cause of intellectual disability. There are two known mammalian paralogs of FMRP, FXR1P, and FXR2P. The functions of FXR1P and FXR2P and their possible roles in producing or modulating the phenotype observed in FXS are yet to be identified. Previous studies have revealed that mice lacking Fxr2 display similar behavioral abnormalities as Fmr1 knockout (KO) mice. In this study, we expand upon the behavioral phenotypes of Fmr1 KO and Fxr2+/- (Het) mice and compare them with Fmr1 KO/Fxr2 Het mice. We find that Fmr1 KO and Fmr1 KO/Fxr2 Het mice are similarly hyperactive compared to WT and Fxr2 Het mice. Fmr1 KO/Fxr2 Het mice have more severe learning and memory impairments than Fmr1 KO mice. Fmr1 KO mice display significantly impaired social behaviors compared to WT mice, which are paradoxically reversed in Fmr1 KO/Fxr2 Het mice. These results highlight the important functional consequences of loss or reduction of FMRP and FXR2P.

12.
Front Behav Neurosci ; 13: 90, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130852

RESUMEN

Sleep abnormalities are prevalent in autism spectrum disorders (ASD). Moreover, the severity of ASD symptoms are correlated with the degree of disturbed sleep. We asked if disturbed sleep during brain development itself could lead to ASD-like symptoms, particularly behavioral manifestations. We reasoned that sleep is known to be important for normal brain development and plasticity, so disrupted sleep during development might result in changes that contribute to behavioral impairments associated with ASD. We sleep-restricted C57BL/6J male mice [beginning at postnatal day 5 (P5) and continuing through P52] 3 h per day by means of gentle handling and compared the data with a stress group (handled every 15 min during the 3-h period) and a control group (no additional handling). From P42-P52, we assessed the behavioral effects of sleep-restriction in this pre-recovery phase. Then, we allowed the mice to recover for 4 weeks and tested behavior once again. Compared to the control group, we found that sleep restricted-mice had long-lasting hypoactivity, and impaired social behavior; repetitive behavior was unaffected. These behavior changes were accompanied by an increase in the downstream signaling products of the mammalian target of rapamycin pathway. These data affirm the importance of undisturbed sleep during development and show that, at least in this model, sleep-restriction can play a causative role in the development of behavioral abnormalities. Assessing and treating sleep abnormalities in ASD may be important in alleviating some of the symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA