Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cytokine ; 111: 272-277, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30241016

RESUMEN

The establishment of latent HIV-1 reservoirs in terminally differentiated cells represents a major impediment to the success of antiretroviral therapies. Notably, macrophages (Mϕs) are susceptible to HIV-1 infection and recent evidence suggests that they may be involved in long-term HIV-1 persistence. While the extensive functional heterogeneity seen across the Mϕ cell lineage parallels the spectrum of HIV-1 susceptibility reported across these cell subsets, the facets of Mϕ HIV-1 resistance and susceptibility remain to be fully defined. Notably, the differentiation of most Mϕ subsets depends on signaling through the macrophage colony-stimulating factor receptor (M-CSFR), which in addition to M-CSF, is now known to bind the unrelated interleukin-34 (IL-34) cytokine. The biological need for two M-CSFR ligands awaits full elucidation. Here, we report that Mϕs differentiated from human peripheral blood monocytes with IL-34 are substantially more resistant to HIV-1 infection than M-CSF-derived Mϕs. Moreover, while both Mϕ subsets express comparable surface protein levels of the HIV-1 receptor and co-receptor, CD4 and CCR5 respectively, the IL-34-Mϕs express significantly greater levels of pertinent restriction factor genes, potentially accounting for their greater resistance to HIV-1 infection than that observed in M-CSF-Mϕs. Together, our findings underline previously unexplored differentiation pathways resulting in HIV-1-susceptible and resistant Mϕ subsets and pave the way for further research that may overcome one of the last major hurdles in developing more successful antiretroviral therapy.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Diferenciación Celular/fisiología , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , VIH-1/patogenicidad , Humanos , Monocitos/metabolismo , Monocitos/virología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo
2.
Front Microbiol ; 9: 985, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872426

RESUMEN

HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/ß) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-ß therapy decreases tax mRNA and lymphoproliferation. We hypothesize this "IFN paradox" in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4+ T cells. This revealed two major clusters ("antiviral/protective" vs. "proviral/deleterious"), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-ß. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up-regulated by IFN-ß, but not IFN-α, in HAM/TSP. This was paralleled by a significant decrease in lymphoproliferation by IFN-ß, but not IFN-α treatment. Finally, using published ex vivo whole blood transcriptomic data of independent cohorts, we validated the significant positive correlation between TRIM5, TRIM22, and BST2 in HTLV-1-infected individuals and HAM/TSP patients, which was independent of the HAM/TSP disease signature. In conclusion, our results provide ex vivo mechanistic evidence for the observed immunovirological effect of in vivo IFN-ß treatment in HAM/TSP, reconcile an apparent IFN paradox in HTLV-1 research and identify biomarkers/targets for a precision medicine approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA