Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298645

RESUMEN

Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.


Asunto(s)
Productos Biológicos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Productos Biológicos/farmacología , Biomimética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado
2.
Anal Biochem ; 645: 114604, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217005

RESUMEN

Low molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices. MSA, EMA, and GA are constitutional isomers of dicarboxylic acid with high polarity and poor ionization efficiency, resulting in such challenges as poor signal intensity and retention, particularly in reversed-phase liquid chromatography with electrospray mass spectrometry (RP-LC-ESI-MS/MS). Derivatization using n-butanol was performed in the sample preparation to enhance the signal intensity accompanied with a positive charge from ionization in complicated biomatrices as well as to improve the separation of these isomers with optimal retention. Fit-for-purpose method validation results demonstrated quantitative ranges for MSA/EMA/GA from 5/10/20 ng/mL to 400 ng/mL in plasma analysis, and 100/200/100 ng/mL to 5000/10000/5000 ng/mL in urine analysis. This validated method demonstrates future utility when exploring population health analysis and biomarker development in metabolic diseases.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Glutaratos , Malonatos , Espectrometría de Masa por Ionización de Electrospray/métodos , Succinatos , Espectrometría de Masas en Tándem/métodos
3.
Prostate ; 81(10): 618-628, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949711

RESUMEN

BACKGROUND: Prostate cancer (PC) is the second most lethal cancer for men. For metastatic PC, standard first-line treatment is androgen deprivation therapy (ADT). While effective, ADT has many metabolic side effects. Previously, we found in serum metabolome analysis that ADT reduced androsterone sulfate, 3-hydroxybutyric acid, acyl-carnitines but increased serum glucose. Since ADT reduced ketogenesis, we speculate that low-carbohydrate diets (LCD) may reverse many ADT-induced metabolic abnormalities in animals and humans. METHODS: In a multicenter trial of patients with PC initiating ADT randomized to no diet change (control) or LCD, we previously showed that LCD intervention led to significant weight loss, reduced fat mass, improved insulin resistance, and lipid profiles. To determine whether and how LCD affects ADT-induced metabolic changes, we analyzed serum metabolites after 3-, and 6-months of ADT on LCD versus control. RESULTS: We found androsterone sulfate was most consistently reduced by ADT and was slightly further reduced in the LCD arm. Contrastingly, LCD intervention increased 3-hydroxybutyric acid and various acyl-carnitines, counteracting their reduction during ADT. LCD also reversed the ADT-reduced lactic acid, alanine, and S-adenosyl methionine (SAM), elevating glycolysis metabolites and alanine. While the degree of androsterone reduction by ADT was strongly correlated with glucose and indole-3-carboxaldehyde, LCD disrupted such correlations. CONCLUSIONS: Together, LCD intervention significantly reversed many ADT-induced metabolic changes while slightly enhancing androgen reduction. Future research is needed to confirm these findings and determine whether LCD can mitigate ADT-linked comorbidities and possibly delaying disease progression by further lowering androgens.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Dieta Baja en Carbohidratos/tendencias , Metabolómica/métodos , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/terapia , Anciano , Antagonistas de Andrógenos/efectos adversos , Androsterona/análogos & derivados , Androsterona/sangre , Antineoplásicos Hormonales/efectos adversos , Humanos , Masculino , Persona de Mediana Edad
4.
Breast Cancer Res Treat ; 186(1): 107-114, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33206291

RESUMEN

PURPOSE: Chemotherapy-induced alopecia (CIA) negatively affects psychosocial health and quality of life (QoL). Currently, there are no approved pharmacologic agents to prevent CIA. Here, we evaluated the safety, tolerability, and potential signal of efficacy of topical calcitriol (BPM31543) on CIA prevention. MATERIALS AND METHODS: This Phase 1 trial included 23 female patients with breast cancer, gynecologic cancer, or sarcomas receiving a taxane-based chemotherapy. Patients received a 3 + 3 dose-escalation regimen at 5, 10, 20, 40, 60, and 80 µg/mL, with 3-6 patients per group. Patients applied topical BPM31543 to the scalp twice a day for 2 weeks prior to chemotherapy and continued until chemotherapy treatment was completed. The maximum tolerated dose (MTD) during first 28 day application was determined. Adverse event (AE) monitoring, pharmacokinetics, blinded photographic assessments, and patient self-assessment were evaluated. RESULTS: Out of 23 patients treated with BPM31543, 8 patients experienced at least 1 treatment-related adverse event (AE). The majority of AEs were mild to moderate in severity. Only 1 patient experienced SAEs (vomiting, nausea, fever, and flank pain) considered treatment related. Alopecia < 50% from baseline was observed in 8 patients at Week 7, and, of which 2 patients had < 50% alopecia maintained at Week 15. There were no detectable effects of topical BPM31543 on serum levels of calcitriol. CONCLUSIONS: BPM31543 applied topically twice daily to the scalp is safe and well tolerated in patients receiving taxane-based chemotherapy. No DLT was observed at up to 80 µg/mL, and MTD was not reached. Based on the data from this trial, BPM31543 represents a promising therapy and warrants further investigation in Phase 2/3 trials.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Alopecia/inducido químicamente , Alopecia/prevención & control , Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Calcitriol , Femenino , Humanos , Calidad de Vida
5.
J Transl Med ; 18(1): 10, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910880

RESUMEN

BACKGROUND: Predicting the clinical course of prostate cancer is challenging due to the wide biological spectrum of the disease. The objective of our study was to identify prostate cancer prognostic markers in patients 'sera using a multi-omics discovery platform. METHODS: Pre-surgical serum samples collected from a longitudinal, racially diverse, prostate cancer patient cohort (N = 382) were examined. Linear Regression and Bayesian computational approaches integrated with multi-omics, were used to select markers to predict biochemical recurrence (BCR). BCR-free survival was modeled using unadjusted Kaplan-Meier estimation curves and multivariable Cox proportional hazards analysis, adjusted for key pathologic variables. Receiver operating characteristic (ROC) curve statistics were used to examine the predictive value of markers in discriminating BCR events from non-events. The findings were further validated by creating a training set (N = 267) and testing set (N = 115) from the cohort. RESULTS: Among 382 patients, 72 (19%) experienced a BCR event in a median follow-up time of 6.9 years. Two proteins-Tenascin C (TNC) and Apolipoprotein A1V (Apo-AIV), one metabolite-1-Methyladenosine (1-MA) and one phospholipid molecular species phosphatidic acid (PA) 18:0-22:0 showed a cumulative predictive performance of AUC = 0.78 [OR (95% CI) = 6.56 (2.98-14.40), P < 0.05], in differentiating patients with and without BCR event. In the validation set all four metabolites consistently reproduced an equivalent performance with high negative predictive value (NPV; > 80%) for BCR. The combination of pTstage and Gleason score with the analytes, further increased the sensitivity [AUC = 0.89, 95% (CI) = 4.45-32.05, P < 0.05], with an increased NPV (0.96) and OR (12.4) for BCR. The panel of markers combined with the pathological parameters demonstrated a more accurate prediction of BCR than the pathological parameters alone in prostate cancer. CONCLUSIONS: In this study, a panel of serum analytes were identified that complemented pathologic patient features in predicting prostate cancer progression. This panel offers a new opportunity to complement current prognostic markers and to monitor the potential impact of primary treatment versus surveillance on patient oncological outcome.


Asunto(s)
Prostatectomía , Neoplasias de la Próstata , Teorema de Bayes , Biomarcadores , Progresión de la Enfermedad , Humanos , Masculino , Clasificación del Tumor , Recurrencia Local de Neoplasia , Pronóstico , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/cirugía
6.
Clin Proteomics ; 17(1): 40, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33292179

RESUMEN

BACKGROUND: Proteomic studies are typically conducted using flash-frozen (FF) samples utilizing tandem mass spectrometry (MS). However, FF specimens are comprised of multiple cell types, making it difficult to ascertain the proteomic profiles of specific cells. Conversely, OCT-embedded (Optimal Cutting Temperature compound) specimens can undergo laser microdissection (LMD) to capture and study specific cell types separately from the cell mixture. In the current study, we compared proteomic data obtained from FF and OCT samples to determine if samples that are stored and processed differently produce comparable results. METHODS: Proteins were extracted from FF and OCT-embedded invasive breast tumors from 5 female patients. FF specimens were lysed via homogenization (FF/HOM) while OCT-embedded specimens underwent LMD to collect only tumor cells (OCT/LMD-T) or both tumor and stromal cells (OCT/LMD-TS) followed by incubation at 37 °C. Proteins were extracted using the illustra triplePrep kit and then trypsin-digested, TMT-labeled, and processed by two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS). Proteins were identified and quantified with Proteome Discoverer v1.4 and comparative analyses performed to identify proteins that were significantly differentially expressed amongst the different processing methods. RESULTS: Among the 4,950 proteins consistently quantified across all samples, 216 and 171 proteins were significantly differentially expressed (adjusted p-value < 0.05; |log2 FC|> 1) between FF/HOM vs. OCT/LMD-T and FF/HOM vs. OCT/LMD-TS, respectively, with most proteins being more highly abundant in the FF/HOM samples. PCA and unsupervised hierarchical clustering analysis with these 216 and 171 proteins were able to distinguish FF/HOM from OCT/LMD-T and OCT/LMD-TS samples, respectively. Similar analyses using significantly differentially enriched GO terms also discriminated FF/HOM from OCT/LMD samples. No significantly differentially expressed proteins were detected between the OCT/LMD-T and OCT/LMD-TS samples but trended differences were detected. CONCLUSIONS: The proteomic profiles of the OCT/LMD-TS samples were more similar to those from OCT/LMD-T samples than FF/HOM samples, suggesting a strong influence from the sample processing methods. These results indicate that in LC-MS/MS proteomic studies, FF/HOM samples exhibit different protein expression profiles from OCT/LMD samples and thus, results from these two different methods cannot be directly compared.

7.
Biochim Biophys Acta Bioenerg ; 1859(9): 975-983, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29580805

RESUMEN

Succinate is known to act as an inflammatory signal in classically activated macrophages through stabilization of HIF-1α leading to IL-1ß production. Relevant to this, hypoxia is known to drive succinate accumulation and release into the extracellular milieu. The metabolic alterations associated with succinate release during inflammation and under hypoxia are poorly understood. Data are presented showing that Mycoplasma arginini infection of VM-M3 cancer cells enhances the Warburg effect associated with succinate production in mitochondria and eventual release into the extracellular milieu. We investigated how succinate production and release was related to the changes of other soluble metabolites, including itaconate and 2-HG. Furthermore, we found that hypoxia alone could induce succinate release from the VM-M3 cells and that this could occur in the absence of glucose-driven lactate production. Our results elucidate metabolic pathways responsible for succinate accumulation and release in cancer cells, thus identifying potential targets involved in both inflammation and hypoxia. This article is part of a Special Issue entitled 20th European Bioenergetics Conference, edited by László Zimányi and László Tretter.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Hipoxia/complicaciones , Inflamación/complicaciones , Infecciones por Mycoplasma/complicaciones , Mycoplasma/patogenicidad , Succinatos/metabolismo , Animales , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Metabolismo Energético , Glioblastoma/etiología , Glioblastoma/metabolismo , Metaboloma , Ratones , Células Tumorales Cultivadas
8.
Biochim Biophys Acta ; 1861(11): 1727-1735, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27542539

RESUMEN

Encysted embryos (cysts) of the crustacean Artemia franciscana exhibit enormous tolerance to adverse conditions encompassing high doses of radiation, years of anoxia, desiccation and extreme salinity. So far, several mechanisms have been proposed to contribute to this extremophilia, however, none were sought in the lipid profile of the cysts. Here in, we used high resolution shotgun lipidomics suited for detailed quantitation and analysis of lipids in uncharacterized biological membranes and samples and assembled the total, mitochondrial and mitoplastic lipidome of Artemia franciscana cysts. Overall, we identified and quantitated 1098 lipid species dispersed among 22 different classes and subclasses. Regarding the mitochondrial lipidome, most lipid classes exhibited little differences from those reported in other animals, however, Artemia mitochondria harboured much less phosphatidylethanolamine, plasmenylethanolamines and ceramides than mitochondria of other species, some of which by two orders of magnitude. Alternatively, Artemia mitochondria exhibited much higher levels of phosphatidylglycerols and phosphatidylserines. The identification and quantitation of the total and mitochondrial lipidome of the cysts may help in the elucidation of actionable extremophilia-affording proteins, such as the 'late embryogenesis abundant' proteins, which are known to interact with lipid membranes.


Asunto(s)
Artemia/embriología , Artemia/metabolismo , Embrión no Mamífero/metabolismo , Metabolismo de los Lípidos , Metaboloma , Mitocondrias/metabolismo , Animales , Western Blotting , Cardiolipinas/metabolismo , Análisis por Conglomerados
9.
BMC Genomics ; 18(1): 987, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273013

RESUMEN

BACKGROUND: Exosomes and other extracellular vesicles (EVs) have emerged as an important mechanism of cell-to-cell communication. However, previous studies either did not fully resolve what genetic materials were shuttled by exosomes or only focused on a specific set of miRNAs and mRNAs. A more systematic method is required to identify the genetic materials that are potentially transferred during cell-to-cell communication through EVs in an unbiased manner. RESULTS: In this work, we present a novel next generation of sequencing (NGS) based approach to identify EV mediated mRNA exchanges between co-cultured adipocyte and macrophage cells. We performed molecular and genomic profiling and jointly considered data from RNA sequencing (RNA-seq) and genotyping to track the "sequence varying mRNAs" transferred between cells. We identified 8 mRNAs being transferred from macrophages to adipocytes and 21 mRNAs being transferred in the opposite direction. These mRNAs represented biological functions including extracellular matrix, cell adhesion, glycoprotein, and signal peptides. CONCLUSIONS: Our study sheds new light on EV mediated RNA communications between adipocyte and macrophage cells, which may play a significant role in developing insulin resistance in diabetic patients. This work establishes a new method that is applicable to examining genetic material exchanges in many cellular systems and has the potential to be extended to in vivo studies as well.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , ARN Mensajero/metabolismo , Adipocitos/metabolismo , Línea Celular , Técnicas de Cocultivo , Expresión Génica , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macrófagos/metabolismo , Transporte de ARN , Análisis de Secuencia de ARN
10.
Biochim Biophys Acta Biomembr ; 1859(7): 1173-1179, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28366515

RESUMEN

CoQ10 is ubiquitously present in eukaryotic cells. It acts as electron carrier in the electron transport chain of the inner membrane of the mitochondria to facilitate aerobic cellular respiration. A highly stable lipid nanodispersion formulation containing CoQ10 (BPM31510) is currently in clinical investigation for treatment of cancer. This study was designed to determine whether biophysical interactions between CoQ10 and lipid, in part, explain the observed stability and cellular accumulation of CoQ10 in cells and tissues. A lipid monolayer at the air-water interface was used as an experimental membrane model to measure CoQ10 penetration and solubility. Lipid monolayers with varying proportions of CoQ10 were laterally compressed to measure CoQ10 miscibility and lateral organization. Additionally, lipid monolayers with varying lateral packing densities were spread at the air-water interface and CoQ10 was injected in proximity to measure its rate of penetration. Our results demonstrate that CoQ10 selectively penetrates into lipid monolayers with a lower lateral packing density, and is excluded by monolayers of higher packing densities. Data also indicates that CoQ10-lipid mixing is non-ideal. CoQ10 presence in lipid monolayers is biphasic, with one phase occupying the interstitial space between the DMPC lipids, and the other phase is present as pure CoQ10 domains. This work provides further insight into mechanism of action of CoQ10 based formulations that can significantly increase intracellular CoQ10 concentration to show pleotropic effects on cellular functions.


Asunto(s)
Lípidos/química , Ubiquinona/análogos & derivados , Membrana Celular/química , Solubilidad , Ubiquinona/química
11.
Mediators Inflamm ; 2017: 9067049, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458470

RESUMEN

Obesity is marked by chronic, low-grade inflammation. Here, we examined whether intrinsic differences between white and brown adipocytes influence the inflammatory status of macrophages. White and brown adipocytes were characterized by transcriptional regulation of UCP-1, PGC1α, PGC1ß, and CIDEA and their level of IL-6 secretion. The inflammatory profile of PMA-differentiated U937 and THP-1 macrophages, in resting state and after stimulation with LPS/IFN-gamma and IL-4, was assessed by measuring IL-6 secretion and transcriptional regulation of a panel of inflammatory genes after mono- or indirect coculture with white and brown adipocytes. White adipocyte monocultures show increased IL-6 secretion compared to brown adipocytes. White adipocytes cocultured with U937 and THP-1 macrophages induced a greater increase in IL-6 secretion compared to brown adipocytes cocultured with both macrophages. White adipocytes cocultured with macrophages increased inflammatory gene expression in both types. In contrast, macrophages cocultured with brown adipocytes induced downregulation or no alterations in inflammatory gene expression. The effects of adipocytes on macrophages appear to be independent of stimulation state. Brown adipocytes exhibit an intrinsic ability to dampen inflammatory profile of macrophages, while white adipocytes enhance it. These data suggest that brown adipocytes may be less prone to adipose tissue inflammation that is associated with obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/inmunología , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/inmunología , Adulto , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Interleucina-4/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Persona de Mediana Edad
12.
Sci Rep ; 14(1): 10036, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693432

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder in which loss of dopaminergic neurons in the substantia nigra results in a clinically heterogeneous group with variable motor and non-motor symptoms with a degree of misdiagnosis. Only 3-25% of sporadic Parkinson's patients present with genetic abnormalities that could represent a risk factor, thus environmental, metabolic, and other unknown causes contribute to the pathogenesis of Parkinson's disease, which highlights the critical need for biomarkers. In the present study, we prospectively collected and analyzed plasma samples from 194 Parkinson's disease patients and 197 age-matched non-diseased controls. N-acetyl putrescine (NAP) in combination with sense of smell (B-SIT), depression/anxiety (HADS), and acting out dreams (RBD1Q) clinical measurements demonstrated combined diagnostic utility. NAP was increased by 28% in Parkinsons disease patients and exhibited an AUC of 0.72 as well as an OR of 4.79. The clinical and NAP panel demonstrated an area under the curve, AUC = 0.9 and an OR of 20.4. The assessed diagnostic panel demonstrates combinatorial utility in diagnosing Parkinson's disease, allowing for an integrated interpretation of disease pathophysiology and highlighting the use of multi-tiered panels in neurological disease diagnosis.


Asunto(s)
Biomarcadores , Enfermedad de Parkinson , Putrescina , Humanos , Enfermedad de Parkinson/diagnóstico , Masculino , Biomarcadores/sangre , Femenino , Anciano , Persona de Mediana Edad , Putrescina/análogos & derivados , Estudios Prospectivos , Estudios de Casos y Controles
13.
Drugs Real World Outcomes ; 9(3): 359-375, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35809196

RESUMEN

BACKGROUND: The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. OBJECTIVES: The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. METHODS: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. RESULTS: We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. CONCLUSIONS: The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources.

14.
Sci Rep ; 12(1): 1186, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075163

RESUMEN

Cancer biomarker discovery is critically dependent on the integrity of biofluid and tissue samples acquired from study participants. Multi-omic profiling of candidate protein, lipid, and metabolite biomarkers is confounded by timing and fasting status of sample collection, participant demographics and treatment exposures of the study population. Contamination by hemoglobin, whether caused by hemolysis during sample preparation or underlying red cell fragility, contributes 0-10 g/L of extraneous protein to plasma, serum, and Buffy coat samples and may interfere with biomarker detection and validation. We analyzed 617 plasma, 701 serum, and 657 buffy coat samples from a 7-year longitudinal multi-omic biomarker discovery program evaluating 400+ participants with or at risk for pancreatic cancer, known as Project Survival. Hemolysis was undetectable in 93.1% of plasma and 95.0% of serum samples, whereas only 37.1% of buffy coat samples were free of contamination by hemoglobin. Regression analysis of multi-omic data demonstrated a statistically significant correlation between hemoglobin concentration and the resulting pattern of analyte detection and concentration. Although hemolysis had the greatest impact on identification and quantitation of the proteome, distinct differentials in metabolomics and lipidomics were also observed and correlated with severity. We conclude that quality control is vital to accurate detection of informative molecular differentials using OMIC technologies and that caution must be exercised to minimize the impact of hemolysis as a factor driving false discovery in large cancer biomarker studies.


Asunto(s)
Biomarcadores/sangre , Hemólisis , Lipidómica/normas , Neoplasias Pancreáticas/sangre , Pancreatitis/sangre , Proteómica/normas , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espectrometría de Masas , Medicina de Precisión
15.
J Racial Ethn Health Disparities ; 8(4): 973-980, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901433

RESUMEN

RATIONALE: Hypertension, obesity and diabetes are major risk factors associated with morbidities underlying COVID-19 infections. Regression analysis correlated presence of ACE insertion/deletion (I/D) polymorphism to COVID-19 incidence and mortality. Furthermore, COVID-19 prevalence correlated to allele frequency of angiotensin-converting enzyme (ACE) deletion (D) polymorphism within the European population. OBJECTIVE: Homozygous ACE deletion polymorphism is associated with increase in ACE and angiotensin II (Ang-II), sustained levels can result in inflammation, fibrosis and organ damage. The ACE DD polymorphism is also associated with hypertension, acute respiratory distress and diabetic nephropathy, all considered high risk for COVID-19 infection and outcomes. The study objective was to describe a biological framework associating ethnic prevalence of ACE deletion polymorphism to COVID-19 comorbidities providing rationale for therapeutic utility of ACE-I/ARBs to improve outcomes. METHOD AND RESULTS: The Allele Frequency Database (ALFRED) was queried for frequency of rs4646994 representing ACE I/D polymorphism. In a total of 349 worldwide population samples, frequency of ACE D allele was higher in European, Asian, and Africans cohorts. In the USA, the frequency of ACE D allele was higher in non-Hispanic Black compared with non-Hispanic White and Mexican Americans. CONCLUSION: COVID-19 binding mediated reduction/inactivation of ACE-II can increase ACE/Ang-II signalling pathway and related pathologies. The presence of ACE DD polymorphism with COVID-19 infection likely augments ACE/Ang-II activities, increasing severity of COVID-19 morbidities and impacts outcomes. Thus, ethnic prevalence of ACE DD polymorphism can explain in part the severity of COVID-19 morbidity providing rationale for the use of ACE-I/ARBs to improve outcomes.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/etnología , Etnicidad/genética , Predisposición Genética a la Enfermedad/etnología , Peptidil-Dipeptidasa A/genética , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Polimorfismo Genético , Prevalencia , Factores de Riesgo
16.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34586382

RESUMEN

The spindle assembly checkpoint protects the integrity of the genome by ensuring that chromosomes are properly attached to the mitotic spindle before they are segregated during anaphase. Activation of the spindle checkpoint results in inhibition of the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that triggers the metaphase-anaphase transition. Here, we show that levels of Ubc1, an E2 enzyme that functions in complex with the APC, modulate the response to spindle checkpoint activation in Saccharomyces cerevisiae. Overexpression of Ubc1 increased resistance to microtubule poisons, whereas Ubc1 shut-off sensitized cells. We also found that Ubc1 levels are regulated by the spindle checkpoint. Checkpoint activation or direct APC inhibition led to a decrease in Ubc1 levels, charging, and half-life. Additionally, stabilization of Ubc1 prevented its down-regulation by the spindle checkpoint and increased resistance to checkpoint-activating drugs. These results suggest that down-regulation of Ubc1 in response to spindle checkpoint signaling is necessary for a robust cell cycle arrest.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anafase , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático , Enzimas Ubiquitina-Conjugadoras/genética
17.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411004

RESUMEN

BACKGROUNDThe angiotensin-converting enzyme (ACE) D allele is more prevalent among African Americans compared with other races and ethnicities and has previously been associated with severe coronavirus disease 2019 (COVID-19) pathogenesis through excessive ACE1 activity. ACE inhibitors/angiotensin receptor blockers (ACE-I/ARB) may counteract this mechanism, but their association with COVID-19 outcomes has not been specifically tested in the African American population.METHODSWe identified 6218 patients who were admitted into Mount Sinai hospitals with COVID-19 between February 24 and May 31, 2020, in New York City. We evaluated whether the outpatient and in-hospital use of ACE-I/ARB is associated with COVID-19 in-hospital mortality in an African American compared with non-African American population.RESULTSOf the 6218 patients with COVID-19, 1138 (18.3%) were ACE-I/ARB users. In a multivariate logistic regression model, ACE-I/ARB use was independently associated with a reduced risk of in-hospital mortality in the entire population (OR, 0.655; 95% CI, 0.505-0.850; P = 0.001), African American population (OR, 0.44; 95% CI, 0.249-0.779; P = 0.005), and non-African American population (OR, 0.748, 95% CI, 0.553-1.012, P = 0.06). In the African American population, in-hospital use of ACE-I/ARB was associated with improved mortality (OR, 0.378; 95% CI, 0.188-0.766; P = 0.006), whereas outpatient use was not (OR, 0.889; 95% CI, 0.375-2.158; P = 0.812). When analyzing each medication class separately, ARB in-hospital use was significantly associated with reduced in-hospital mortality in the African American population (OR, 0.196; 95% CI, 0.074-0.516; P = 0.001), whereas ACE-I use was not associated with impact on mortality in any population.CONCLUSIONIn-hospital use of ARB was associated with a significant reduction in in-hospital mortality among COVID-19-positive African American patients.FUNDINGNone.


Asunto(s)
Antagonistas de Receptores de Angiotensina/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Negro o Afroamericano , Tratamiento Farmacológico de COVID-19 , COVID-19 , Mortalidad Hospitalaria/etnología , SARS-CoV-2/metabolismo , Anciano , COVID-19/etnología , COVID-19/metabolismo , COVID-19/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Peptidil-Dipeptidasa A/metabolismo , Estudios Retrospectivos , Tasa de Supervivencia
18.
Sci Rep ; 11(1): 15052, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302010

RESUMEN

Prostate-specific antigen (PSA) screening for prostate cancer (PCa) is limited by the lack of specificity but is further complicated in the benign prostatic hyperplasia (BPH) population which also exhibit elevated PSA, representing a clear unmet need to distinguish BPH from PCa. Herein, we evaluated the utility of FLNA IP-MRM, age, and prostate volume to stratify men with BPH from those with PCa. Diagnostic performance of the biomarker panel was better than PSA alone in discriminating patients with negative biopsy from those with PCa, as well as those who have had multiple prior biopsies (AUC 0.75 and 0.87 compared to AUC of PSA alone 0.55 and 0.57 for patients who have had single compared to multiple negative biopsies, respectively). Of interest, in patients with PCa, the panel demonstrated improved performance than PSA alone in those with Gleason scores of 5-7 (AUC 0.76 vs. 0.56) and Gleason scores of 8-10 (AUC 0.74 vs. 0.47). With Gleason scores (8-10), the negative predictive value of the panel is 0.97, indicating potential to limit false negatives in aggressive cancers. Together, these data demonstrate the ability of the biomarker panel to perform better than PSA alone in men with BPH, thus preventing unnecessary biopsies.


Asunto(s)
Biomarcadores de Tumor/sangre , Diagnóstico Diferencial , Hiperplasia Prostática/diagnóstico , Neoplasias de la Próstata/diagnóstico , Anciano , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Próstata/metabolismo , Antígeno Prostático Específico/sangre , Hiperplasia Prostática/sangre , Hiperplasia Prostática/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología
19.
Sci Rep ; 11(1): 5749, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707480

RESUMEN

Reactive oxygen species (ROS) are implicated in triggering cell signalling events and pathways to promote and maintain tumorigenicity. Chemotherapy and radiation can induce ROS to elicit cell death allows for targeting ROS pathways for effective anti-cancer therapeutics. Coenzyme Q10 is a critical cofactor in the electron transport chain with complex biological functions that extend beyond mitochondrial respiration. This study demonstrates that delivery of oxidized Coenzyme Q10 (ubidecarenone) to increase mitochondrial Q-pool is associated with an increase in ROS generation, effectuating anti-cancer effects in a pancreatic cancer model. Consequent activation of cell death was observed in vitro in pancreatic cancer cells, and both human patient-derived organoids and tumour xenografts. The study is a first to demonstrate the effectiveness of oxidized ubidecarenone in targeting mitochondrial function resulting in an anti-cancer effect. Furthermore, these findings support the clinical development of proprietary formulation, BPM31510, for treatment of cancers with high ROS burden with potential sensitivity to ubidecarenone.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Animales , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Supervivencia Celular , Complejo II de Transporte de Electrones/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+) , Humanos , Potencial de la Membrana Mitocondrial , Ratones Desnudos , Organoides/patología , Estrés Oxidativo , Consumo de Oxígeno , Neoplasias Pancreáticas/metabolismo , Especificidad por Sustrato , Ubiquinona/metabolismo
20.
Metabolites ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485899

RESUMEN

Widespread application of omic technologies is evolving our understanding of population health and holds promise in providing precise guidance for selection of therapeutic interventions based on patient biology. The opportunity to use hundreds of analytes for diagnostic assessment of human health compared to the current use of 10-20 analytes will provide greater accuracy in deconstructing the complexity of human biology in disease states. Conventional biochemical measurements like cholesterol, creatinine, and urea nitrogen are currently used to assess health status; however, metabolomics captures a comprehensive set of analytes characterizing the human phenotype and its complex metabolic processes in real-time. Unlike conventional clinical analytes, metabolomic profiles are dramatically influenced by demographic and environmental factors that affect the range of normal values and increase the risk of false biomarker discovery. This review addresses the challenges and opportunities created by the evolving field of clinical metabolomics and highlights features of study design and bioinformatics necessary to maximize the utility of metabolomics data across demographic groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA