Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Environ Res ; 93(10): 1979-1994, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33835675

RESUMEN

Raw palygorskite (Pal) samples went under acid (H-Pal), NaCl (Na-Pal), and CaCl2 treatment (Ca-Pal) in order to be examined as ammonium (NH4 + ) sorbents from aqueous solutions. The samples were characterized by XRD and FT-IR techniques to examine potential structural differences after modifications, and batch kinetic experiment series were applied to determine the optimal conditions for NH4 + removal. According to thermodynamic analysis, the removal reaction for sodium- and calcium-treated samples was endothermic (ΔΗ0  > 0, 1.65 kJ/mol and 24.66 kJ/mol, respectively), in contrast with the exothermic reactions of raw and acidic-treated palygorskite samples (ΔΗ0  < 0, -37.18 kJ/mol and -27.56 kJ/mol respectively). Moreover, each sample presented a different order of sorbed ions preference, whereas the strong affinity for Ca2+ sorption was common in all cases since the NH4 + removal inhibited. Nevertheless, a similar pattern was followed for raw and modified samples at isotherm study, rendering the linear form of Freundlich isotherm to express better the NH4 + sorption on palygorskite sample, indicating that it is a heterogeneous procedure. In all cases, the NH4 + maximum uptake was within 15 min using 8 g/L of each sorbent, especially for the Na-Pal sample, which could reach almost 100% removal of low concentration NH4 + . PRACTITIONER POINTS: Modified palygorskite samples were tested for NH4 + removal from aqueous solutions. NaCl-treated palygorskite had the higher removal efficiency, which could reach almost 100% removal of low concentration NH4 + . NH4 + maximum uptake was within 15 minutes using 8 g/L of each sorbent. NH4 + adsorption was an endothermic reaction for NaCl- and CaCl2 -treated palygorskite sorbents. NH4 + adsorption was an exothermic reaction for raw and acid-treated palygorskite sorbents.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Magnesio , Compuestos de Silicona , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA