Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 149(5): 1098-111, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632973

RESUMEN

Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF. Skp2 deficiency impairs Akt activation, Glut1 expression, glucose uptake and glycolysis, and breast cancer progression in various tumor models. Moreover, Skp2 overexpression correlates with Akt activation and breast cancer metastasis and serves as a marker for poor prognosis in Her2-positive patients. Finally, Skp2 silencing sensitizes Her2-overexpressing tumors to Herceptin treatment. Our study suggests that distinct E3 ligases are utilized by diverse growth factors for Akt activation and that targeting glycolysis sensitizes Her2-positive tumors to Herceptin treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Transformación Celular Neoplásica , Proteínas F-Box/metabolismo , Glucólisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Receptor ErbB-2/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Trastuzumab , Ubiquitinación
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473779

RESUMEN

The use of vitamin C (VC) in high doses demonstrates a potent tumor suppressive effect by mediating a glucose-dependent oxidative stress in Kirsten rat sarcoma (KRAS) mutant cancer cells. VC with arsenic trioxide (ATO) is a promising drug combination that might lead to the development of effective cancer therapeutics. Considering that a tumor suppressive effect of VC requires its high-dose administration, it is of interest to examine the toxicity of two enantiomers of VC (enantiomer d-optical isomer D-VC and natural l-optical isomer L-VC) in vitro and in vivo. We show that the combinations of L-VC with ATO and D-VC with ATO induced a similar cytotoxic oxidative stress in KrasG12D-expressing mutant cancer cells as indicated by a substantial increase in reactive oxidative species (ROS) production and depolarization of mitochondria. To examine the L-VC and D-VC toxicity effects, we administered high doses of D-VC and L-VC to CD1 mice and carried out an evaluation of their toxic effects. The daily injections of L-VC at a dose of 9.2 g/kg for 18 days were lethal to mice, while 80% of mice remained alive following the similar high-dose administration of D-VC. Following the drug injection courses and histopathological studies, we determined that a natural form of VC (L-VC) is more harmful and toxic to mice when compared to the effects caused by the similar doses of D-VC. Thus, our study indicates that the two enantiomers of VC have a similar potency in the induction of oxidative stress in cancer cells, but D-VC has a distinctive lower toxicity in mice compared to L-VC. While the mechanism of a distinctive toxicity between D-VC and L-VC is yet to be defined, our finding marks D-VC as a more preferable option compared to its natural enantiomer L-VC in clinical settings.


Asunto(s)
Ácido Ascórbico , Neoplasias , Animales , Ratones , Ácido Ascórbico/farmacología , Proteínas Proto-Oncogénicas p21(ras) , Estrés Oxidativo , Vitaminas/farmacología , Trióxido de Arsénico/farmacología
3.
Mol Cell ; 58(6): 989-1000, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26051179

RESUMEN

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.


Asunto(s)
Aminoácidos/farmacología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/genética , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Immunoblotting , Lisina/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Microscopía Confocal , Modelos Biológicos , Células 3T3 NIH , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Proteínas Quinasas Asociadas a Fase-S/genética , Ubiquitinación/efectos de los fármacos
4.
J Biomed Sci ; 29(1): 76, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180910

RESUMEN

Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Transductores
6.
J Biol Chem ; 294(28): 10746-10757, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31076509

RESUMEN

In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.


Asunto(s)
Precursores del ARN/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Acetiltransferasas N-Terminal/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
7.
Int J Cancer ; 146(10): 2822-2828, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472018

RESUMEN

Kirsten rat sarcoma (KRAS) mutant cancers, which constitute the vast majority of pancreatic tumors, are characterized by their resistance to established therapies and high mortality rates. Here, we developed a novel and extremely effective combinational therapeutic approach to target KRAS mutant tumors through the generation of a cytotoxic oxidative stress. At high concentrations, vitamin C (VC) is known to provoke oxidative stress and selectively kill KRAS mutant cancer cells, although its effects are limited when it is given as monotherapy. We found that the combination of VC and the oxidizing drug arsenic trioxide (ATO) is an effective therapeutic treatment modality. Remarkably, its efficiency is dependent on chirality of VC as its enantiomer d-optical isomer of VC (d-VC) is significantly more potent than the natural l-optical isomer of VC. Thus, our results demonstrate that the oxidizing combination of ATO and d-VC is a promising approach for the treatment of KRAS mutant human cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Trióxido de Arsénico/farmacología , Ácido Ascórbico/farmacología , Neoplasias Experimentales , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ácido Ascórbico/química , Sinergismo Farmacológico , Células HCT116 , Humanos , Isomerismo , Ratones Desnudos , Mutación , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Breast Cancer Res ; 19(1): 74, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28666462

RESUMEN

BACKGROUND: The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear. METHODS: Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays. RESULTS: We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility. CONCLUSION: These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Amplificación de Genes , Xenoinjertos , Humanos , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/genética , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo
10.
Haematologica ; 102(9): 1537-1548, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28659338

RESUMEN

The bone marrow microenvironment is known to provide a survival advantage to residual acute myeloid leukemia cells, possibly contributing to disease recurrence. The mechanisms by which stroma in the microenvironment regulates leukemia survival remain largely unknown. Using reverse-phase protein array technology, we profiled 53 key protein molecules in 11 signaling pathways in 20 primary acute myeloid leukemia samples and two cell lines, aiming to understand stroma-mediated signaling modulation in response to the targeted agents temsirolimus (MTOR), ABT737 (BCL2/BCL-XL), and Nutlin-3a (MDM2), and to identify the effective combination therapy targeting acute myeloid leukemia in the context of the leukemia microenvironment. Stroma reprogrammed signaling networks and modified the sensitivity of acute myeloid leukemia samples to all three targeted inhibitors. Stroma activated AKT at Ser473 in the majority of samples treated with single-agent ABT737 or Nutlin-3a. This survival mechanism was partially abrogated by concomitant treatment with temsirolimus plus ABT737 or Nutlin-3a. Mapping the signaling networks revealed that combinations of two inhibitors increased the number of affected proteins in the targeted pathways and in multiple parallel signaling, translating into facilitated cell death. These results demonstrated that a mechanism-based selection of combined inhibitors can be used to guide clinical drug selection and tailor treatment regimens to eliminate microenvironment-mediated resistance in acute myeloid leukemia.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Células Tumorales Cultivadas
11.
J Biol Chem ; 288(38): 27019-27030, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23928304

RESUMEN

Nutrients are essential for living organisms because they fuel biological processes in cells. Cells monitor nutrient abundance and coordinate a ratio of anabolic and catabolic reactions. Mechanistic target of rapamycin (mTOR) signaling is the essential nutrient-sensing pathway that controls anabolic processes in cells. The central component of this pathway is mTOR, a highly conserved and essential protein kinase that exists in two distinct functional complexes. The nutrient-sensitive mTOR complex 1 (mTORC1) controls cell growth and cell size by phosphorylation of the regulators of protein synthesis S6K1 and 4EBP1, whereas its second complex, mTORC2, regulates cell proliferation by functioning as the regulatory kinase of Akt and other members of the AGC kinase family. The regulation of mTORC2 remains poorly characterized. Our study shows that the cellular ATP balance controls a basal kinase activity of mTORC2 that maintains the integrity of mTORC2 and phosphorylation of Akt on the turn motif Thr-450 site. We found that mTOR stabilizes SIN1 by phosphorylation of its hydrophobic and conserved Ser-260 site to maintain the integrity of mTORC2. The optimal kinase activity of mTORC2 requires a concentration of ATP above 1.2 mM and makes this kinase complex highly sensitive to ATP depletion. We found that not amino acid but glucose deprivation of cells or acute ATP depletion prevented the mTOR-dependent phosphorylation of SIN1 on Ser-260 and Akt on Thr-450. In a low glucose medium, the cells carrying a substitution of SIN1 with its phosphomimetic mutant show an increased rate of cell proliferation related to a higher abundance of mTORC2 and phosphorylation of Akt. Thus, the homeostatic ATP sensor mTOR controls the integrity of mTORC2 and phosphorylation of Akt on the turn motif site.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proliferación Celular , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/genética , Secuencias de Aminoácidos , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética
12.
Sci Rep ; 13(1): 10334, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365249

RESUMEN

We developed a comprehensive multiplexed set of primers adapted for the Oxford Nanopore Rapid Barcoding library kit that allows universal SARS-CoV-2 genome sequencing. This primer set is designed to set up any variants of the primers pool for whole-genome sequencing of SARS-CoV-2 using single- or double-tiled amplicons from 1.2 to 4.8 kb with the Oxford Nanopore. This multiplexed set of primers is also applicable for tasks like targeted SARS-CoV-2 genome sequencing. We proposed here an optimized protocol to synthesize cDNA using Maxima H Minus Reverse Transcriptase with a set of SARS-CoV-2 specific primers, which has high yields of cDNA template for RNA and is capable of long-length cDNA synthesis from a wide range of RNA amounts and quality. The proposed protocol allows whole-genome sequencing of the SARS-CoV-2 virus with tiled amplicons up to 4.8 kb on low-titer virus samples and even where RNA degradation has occurred. This protocol reduces the time and cost from RNA to genome sequence compared to the Midnight multiplex PCR method for SARS-CoV-2 genome sequencing using the Oxford Nanopore.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Secuenciación de Nanoporos/métodos , ADN Complementario/genética , ARN
13.
Mol Neurobiol ; 60(8): 4324-4335, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37095367

RESUMEN

In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and no established cause of the disease during the July-December, 2021. The average age at enrolment was 34.5 months, with a mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of pediatric epilepsy in Kazakhstan is very broad and requires further research.


Asunto(s)
Epilepsia , Humanos , Niño , Masculino , Preescolar , Lactante , Femenino , Epilepsia/genética , Estudios de Asociación Genética , Secuenciación Completa del Genoma , Variación Biológica Poblacional , Pruebas Genéticas , Protocadherinas , Canales de potasio activados por Sodio/genética , Proteínas del Tejido Nervioso/genética
14.
J Biol Chem ; 286(46): 40386-94, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21965657

RESUMEN

In higher eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Deregulation of PI3K/Akt signaling is linked to human diseases, including cancer and metabolic disorders. The PI3K-dependent signaling kinase complex mTORC2 (mammalian target of rapamycin complex 2) has been defined as the regulatory Ser-473 kinase of Akt. The regulation of mTORC2 remains very poorly characterized. We have reconstituted mTORC2 by its assembly in vitro or by co-expression its four essential components (rictor, SIN1, mTOR, mLST8). We show that the functional mTOR kinase domain is required for the mTORC2 activity as the Ser-473 kinase of Akt. We also found that mTOR by phosphorylation of SIN1 prevents its lysosomal degradation. Thus, the kinase domain of mTOR is required for the functional activity of mTORC2, and it controls integrity of mTORC2 by maintaining the protein stability of SIN1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética
15.
Curr Opin Cell Biol ; 17(6): 596-603, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16226444

RESUMEN

The mammalian TOR (mTOR) pathway is a key regulator of cell growth and proliferation and increasing evidence suggests that its deregulation is associated with human diseases, including cancer and diabetes. The mTOR pathway integrates signals from nutrients, energy status and growth factors to regulate many processes, including autophagy, ribosome biogenesis and metabolism. Recent work identifying two structurally and functionally distinct mTOR-containing multiprotein complexes and TSC1/2, rheb, and AMPK as upstream regulators of mTOR is beginning to reveal how mTOR can sense diverse signals and produce a myriad of responses.


Asunto(s)
Enfermedad/etiología , Neoplasias/etiología , Proteínas Quinasas/fisiología , Transducción de Señal , Animales , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR
16.
Cells ; 11(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359850

RESUMEN

The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.


Asunto(s)
Ácido Ascórbico , Neoplasias , Humanos , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Estrés Oxidativo , Vitaminas/farmacología , Oxidación-Reducción , Neoplasias/tratamiento farmacológico , Neoplasias/genética
17.
Biomed Res Int ; 2022: 9426623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619305

RESUMEN

Background: Kirsten rat sarcoma (KRAS) protein is an essential contributor to the development of pancreatic ductal adenocarcinoma (PDAC). KRAS G12D and G12V mutant tumours are significant challenges in cancer therapy due to high resistance to the treatment. Objective: To determine how effective is the ATO/D-VC combination in suppression of PDAC the mouse transgenic model. This study investigated the antitumour effect of a novel combination of arsenic trioxide (ATO) and D-ascorbic acid isomer (D-VC). Such a combination can be used to treat KRAS mutant cancer by inducing catastrophic oxidative stress. Methods: In this study, we examined the effectiveness of ATO and D-VC on xenograft models-AK192 cells transplanted into mice. Previously, it has been shown that a high concentration of Vitamin C (VC) selectively can kill the cells expressing KRAS. Results: The results of this study demonstrated that the combination of VC with a low dose of the oxidizing drug ATO led to the enhancement of the therapeutic effect. These findings suggest that the combined treatment using ATO and D-VC is a promising approach to overcome the limitation of drug selectivity and efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Trióxido de Arsénico/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Combinación de Medicamentos , Oxidación-Reducción , Línea Celular Tumoral , Neoplasias Pancreáticas
18.
Front Genet ; 13: 906318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118859

RESUMEN

Severe acute respiratory syndrome (SARS-CoV-2) is responsible for the worldwide pandemic, COVID-19. The original viral whole-genome was sequenced by a high-throughput sequencing approach from the samples obtained from Wuhan, China. Real-time gene sequencing is the main parameter to manage viral outbreaks because it expands our understanding of virus proliferation, spread, and evolution. Whole-genome sequencing is critical for SARS-CoV-2 variant surveillance, the development of new vaccines and boosters, and the representation of epidemiological situations in the country. A significant increase in the number of COVID-19 cases confirmed in August 2021 in Kazakhstan facilitated a need to establish an effective and proficient system for further study of SARS-CoV-2 genetic variants and the development of future Kazakhstan's genomic surveillance program. The SARS-CoV-2 whole-genome was sequenced according to SARS-CoV-2 ARTIC protocol (EXP-MRT001) by Oxford Nanopore Technologies at the National Laboratory Astana, Kazakhstan to track viral variants circulating in the country. The 500 samples kindly provided by the Republican Diagnostic Center (UMC-NU) and private laboratory KDL "Olymp" were collected from individuals in Nur-Sultan city diagnosed with COVID-19 from August 2021 to May 2022 using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). All samples had a cycle threshold (Ct) value below 20 with an average Ct value of 17.03. The overall average value of sequencing depth coverage for samples is 244X. 341 whole-genome sequences that passed quality control were deposited in the Global initiative on sharing all influenza data (GISAID). The BA.1.1 (n = 189), BA.1 (n = 15), BA.2 (n = 3), BA.1.15 (n = 1), BA.1.17.2 (n = 1) omicron lineages, AY.122 (n = 119), B.1.617.2 (n = 8), AY.111 (n = 2), AY.126 (n = 1), AY.4 (n = 1) delta lineages, one sample B.1.1.7 (n = 1) belongs to alpha lineage, and one sample B.1.637 (n = 1) belongs to small sublineage were detected in this study. This is the first study of SARS-CoV-2 whole-genome sequencing by the ONT approach in Kazakhstan, which can be expanded for the investigation of other emerging viral or bacterial infections on the country level.

19.
Biochem Biophys Res Commun ; 413(1): 46-52, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21867682

RESUMEN

The Akt kinase is a critical effector in growth factor signaling. Activation of Akt driven by the growth factor dependent PI3K (phosphatidylinositol-3-OH kinase) is coupled to the plasma membrane translocation and phosphorylation of Akt on two sites by PDK1 (phosphoinositide-dependent protein kinase-1) on Thr-308 and by mTORC2 (mammalian Target of Rapamycin Complex 2) on Ser-473. In our study we examined the sub-cellular localization of mTORC2 and identified that this kinase complex predominantly resides on endoplasmic reticulum (ER). Our immunostaining analysis did not show a substantial co-localization of the mTORC2 component rictor with Golgi, lysosome, clathrin-coated vesicles, early endosomes, or plasma membrane but indicated a strong co-localization of rictor with ribosomal protein S6 and ER marker. Our biochemical study also identified the mTORC2 components rictor, SIN1, and mTOR as the highly abundant proteins in the ER fraction, whereas only small amount of these proteins are detected in the plasma membrane and cytosolic fractions. We found that growth factor signaling does not alter the ER localization of mTORC2 and also does not induce its translocation to the plasma membrane. Based on our study we suggest that the mTORC2-dependent phosphorylation of Akt on Ser-473 takes place on the surface of ER.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Portadoras/análisis , Línea Celular , Membrana Celular/enzimología , Vesículas Cubiertas por Clatrina/enzimología , Retículo Endoplásmico/química , Endosomas/enzimología , Aparato de Golgi/enzimología , Humanos , Inmunohistoquímica , Lisosomas/enzimología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Coloración y Etiquetado , Serina-Treonina Quinasas TOR/análisis
20.
Front Cell Dev Biol ; 8: 606685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330509

RESUMEN

Germination is a process of seed sprouting that facilitates embryo growth. The breakdown of reserved starch in the endosperm into simple sugars is essential for seed germination and subsequent seedling growth. At the early stage of germination, gibberellic acid (GA) activates transcription factor GAMYB to promote de novo synthesis of isoforms of α-amylase in the aleurone layer and scutellar epithelium of the embryo. Here, we demonstrate that wheat germination is regulated by plant target of rapamycin (TOR) signaling. TOR is a central component of the essential-nutrient-dependent pathway controlling cell growth in all eukaryotes. It is known that rapamycin, a highly specific allosteric inhibitor of TOR, is effective in yeast and animal cells but ineffective in most of higher plants likely owing to structural differences in ubiquitous rapamycin receptor FKBP12. The action of rapamycin on wheat growth has not been studied. Our data show that rapamycin inhibits germination of wheat seeds and of their isolated embryos in a dose-dependent manner. The involvement of Triticum aestivum TOR (TaTOR) in wheat germination was consistent with the suppression of wheat embryo growth by specific inhibitors of the TOR kinase: pp242 or torin1. Rapamycin or torin1 interfered with GA function in germination because of a potent inhibitory effect on α-amylase and GAMYB gene expression. The TOR inhibitors selectively targeted the GA-dependent gene expression, whereas expression of the abscisic acid-dependent ABI5 gene was not affected by either rapamycin or torin1. To determine whether the TaTOR kinase activation takes place during wheat germination, we examined phosphorylation of a ribosomal protein, T. aestivum S6 kinase 1 (TaS6K1; a substrate of TOR). The phosphorylation of serine 467 (S467) in a hydrophobic motif on TaS6K1 was induced in a process of germination triggered by GA. Moreover, the germination-induced phosphorylation of TaS6K1 on S467 was dependent on TaTOR and was inhibited by rapamycin or torin1. Besides, a gibberellin biosynthesis inhibitor (paclobutrazol; PBZ) blocked not only α-amylase gene expression but also TaS6K1 phosphorylation in wheat embryos. Thus, a hormonal action of GA turns on the synthesis of α-amylase in wheat germination via activation of the TaTOR-S6K1 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA