Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ann Neurol ; 86(2): 293-303, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125140

RESUMEN

OBJECTIVE: Thymidine kinase 2, encoded by the nuclear gene TK2, is required for mitochondrial DNA maintenance. Autosomal recessive TK2 mutations cause depletion and multiple deletions of mtDNA that manifest predominantly as a myopathy usually beginning in childhood and progressing relentlessly. We investigated the safety and efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies. METHODS: We administered deoxynucleoside monophosphates and deoxynucleoside to 16 TK2-deficient patients under a compassionate use program. RESULTS: In 5 patients with early onset and severe disease, survival and motor functions were better than historically untreated patients. In 11 childhood and adult onset patients, clinical measures stabilized or improved. Three of 8 patients who were nonambulatory at baseline gained the ability to walk on therapy; 4 of 5 patients who required enteric nutrition were able to discontinue feeding tube use; and 1 of 9 patients who required mechanical ventilation became able to breathe independently. In motor functional scales, improvements were observed in the 6-minute walk test performance in 7 of 8 subjects, Egen Klassifikation in 2 of 3, and North Star Ambulatory Assessment in all 5 tested. Baseline elevated serum growth differentiation factor 15 levels decreased with treatment in all 7 patients tested. A side effect observed in 8 of the 16 patients was dose-dependent diarrhea, which did not require withdrawal of treatment. Among 12 other TK2 patients treated with deoxynucleoside, 2 adults developed elevated liver enzymes that normalized following discontinuation of therapy. INTERPRETATION: This open-label study indicates favorable side effect profiles and clinical efficacy of deoxynucleoside monophosphate and deoxynucleoside therapies for TK2 deficiency. ANN NEUROL 2019;86:293-303.


Asunto(s)
Ensayos de Uso Compasivo/métodos , Desoxirribonucleósidos/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/enzimología , Timidina Quinasa/deficiencia , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Prueba de Paso/métodos
2.
Orphanet J Rare Dis ; 16(1): 407, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600563

RESUMEN

BACKGROUND: Mitochondrial diseases are difficult to diagnose and treat. Recent advances in genetic diagnostics and more effective treatment options can improve patient diagnosis and prognosis, but patients with mitochondrial disease typically experience delays in diagnosis and treatment. Here, we describe a unique collaborative practice model among physicians and scientists in Spain focused on identifying TK2 deficiency (TK2d), an ultra-rare mitochondrial DNA depletion and deletions syndrome. MAIN BODY: This collaboration spans research and clinical care, including laboratory scientists, adult and pediatric neuromuscular clinicians, geneticists, and pathologists, and has resulted in diagnosis and consolidation of care for patients with TK2d. The incidence of TK2d is not known; however, the first clinical cases of TK2d were reported in 2001, and only ~ 107 unique cases had been reported as of 2018. This unique collaboration in Spain has led to the diagnosis of more than 30 patients with genetically confirmed TK2d across different regions of the country. Research affiliate centers have led investigative treatment with nucleosides based on understanding of TK2d clinical manifestations and disease mechanisms, which resulted in successful treatment of a TK2d mouse model with nucleotide therapy in 2010. Only 1 year later, this collaboration enabled rapid adoption of treatment with pyrimidine nucleotides (and later, nucleosides) under compassionate use. Success in TK2d diagnosis and treatment in Spain is attributable to two important factors: Spain's fully public national healthcare system, and the designation in 2015 of major National Reference Centers for Neuromuscular Disorders (CSURs). CSUR networking and dissemination facilitated development of a collaborative care network for TK2d disease, wherein participants share information and protocols to request approval from the Ministry of Health to initiate nucleoside therapy. Data have recently been collected in a retrospective study conducted under a Good Clinical Practice-compliant protocol to support development of a new therapeutic approach for TK2d, a progressive disease with no approved therapies. CONCLUSIONS: The Spanish experience in diagnosis and treatment of TK2d is a model for the diagnosis and development of new treatments for very rare diseases within an existing healthcare system.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Raras , Timidina Quinasa/deficiencia , Animales , Humanos , Ratones , Enfermedades Raras/diagnóstico , Estudios Retrospectivos , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA