Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Global Biogeochem Cycles ; 36(7): e2021GB007156, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36248262

RESUMEN

The deep ocean releases large amounts of old, pre-industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2 release is relevant to the global climate because its changes could alter atmospheric CO2 levels on long time scales, and also affects the present-day potential of the Southern Ocean to take up anthropogenic CO2. Here, year-round profiling float measurements show that this CO2 release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea-ice edge. This band of high CO2 subsurface water coincides with the outcropping of the 27.8 kg m-3 isoneutral density surface that characterizes Indo-Pacific Deep Water (IPDW). It has a potential partial pressure of CO2 exceeding current atmospheric CO2 levels (∆PCO2) by 175 ± 32 µatm. Ship-based measurements reveal that IPDW exhibits a distinct ∆PCO2 maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2 decreases. Most of this vertical ∆PCO2 decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2 outgassing from the high-carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2 fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.

2.
Global Biogeochem Cycles ; 34(8): e2019GB006453, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32999530

RESUMEN

Anthropogenically forced changes in ocean biogeochemistry are underway and critical for the ocean carbon sink and marine habitat. Detecting such changes in ocean biogeochemistry will require quantification of the magnitude of the change (anthropogenic signal) and the natural variability inherent to the climate system (noise). Here we use Large Ensemble (LE) experiments from four Earth system models (ESMs) with multiple emissions scenarios to estimate Time of Emergence (ToE) and partition projection uncertainty for anthropogenic signals in five biogeochemically important upper-ocean variables. We find ToEs are robust across ESMs for sea surface temperature and the invasion of anthropogenic carbon; emergence time scales are 20-30 yr. For the biological carbon pump, and sea surface chlorophyll and salinity, emergence time scales are longer (50+ yr), less robust across the ESMs, and more sensitive to the forcing scenario considered. We find internal variability uncertainty, and model differences in the internal variability uncertainty, can be consequential sources of uncertainty for projecting regional changes in ocean biogeochemistry over the coming decades. In combining structural, scenario, and internal variability uncertainty, this study represents the most comprehensive characterization of biogeochemical emergence time scales and uncertainty to date. Our findings delineate critical spatial and duration requirements for marine observing systems to robustly detect anthropogenic change.

3.
Proc Natl Acad Sci U S A ; 114(8): E1441-E1449, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28115722

RESUMEN

Photosynthesis fuels marine food webs, yet differences in fish catch across globally distributed marine ecosystems far exceed differences in net primary production (NPP). We consider the hypothesis that ecosystem-level variations in pelagic and benthic energy flows from phytoplankton to fish, trophic transfer efficiencies, and fishing effort can quantitatively reconcile this contrast in an energetically consistent manner. To test this hypothesis, we enlist global fish catch data that include previously neglected contributions from small-scale fisheries, a synthesis of global fishing effort, and plankton food web energy flux estimates from a prototype high-resolution global earth system model (ESM). After removing a small number of lightly fished ecosystems, stark interregional differences in fish catch per unit area can be explained (r = 0.79) with an energy-based model that (i) considers dynamic interregional differences in benthic and pelagic energy pathways connecting phytoplankton and fish, (ii) depresses trophic transfer efficiencies in the tropics and, less critically, (iii) associates elevated trophic transfer efficiencies with benthic-predominant systems. Model catch estimates are generally within a factor of 2 of values spanning two orders of magnitude. Climate change projections show that the same macroecological patterns explaining dramatic regional catch differences in the contemporary ocean amplify catch trends, producing changes that may exceed 50% in some regions by the end of the 21st century under high-emissions scenarios. Models failing to resolve these trophodynamic patterns may significantly underestimate regional fisheries catch trends and hinder adaptation to climate change.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Adaptación Fisiológica/fisiología , Animales , Cambio Climático/estadística & datos numéricos , Ecosistema , Peces/fisiología , Cadena Alimentaria , Modelos Biológicos , Océanos y Mares , Plancton/fisiología
4.
Glob Chang Biol ; 25(8): 2544-2559, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152499

RESUMEN

Substantial interannual variability in marine fish recruitment (i.e., the number of young fish entering a fishery each year) has been hypothesized to be related to whether the timing of fish spawning matches that of seasonal plankton blooms. Environmental processes that control the phenology of blooms, such as stratification, may differ from those that influence fish spawning, such as temperature-linked reproductive maturation. These different controlling mechanisms could cause the timing of these events to diverge under climate change with negative consequences for fisheries. We use an earth system model to examine the impact of a high-emissions, climate-warming scenario (RCP8.5) on the future spawning time of two classes of temperate, epipelagic fishes: "geographic spawners" whose spawning grounds are defined by fixed geographic features (e.g., rivers, estuaries, reefs) and "environmental spawners" whose spawning grounds move responding to variations in environmental properties, such as temperature. By the century's end, our results indicate that projections of increased stratification cause spring and summer phytoplankton blooms to start 16 days earlier on average (±0.05 days SE) at latitudes >40°N. The temperature-linked phenology of geographic spawners changes at a rate twice as fast as phytoplankton, causing these fishes to spawn before the bloom starts across >85% of this region. "Extreme events," defined here as seasonal mismatches >30 days that could lead to fish recruitment failure, increase 10-fold for geographic spawners in many areas under the RCP8.5 scenario. Mismatches between environmental spawners and phytoplankton were smaller and less widespread, although sizable mismatches still emerged in some regions. This indicates that range shifts undertaken by environmental spawners may increase the resiliency of fishes to climate change impacts associated with phenological mismatches, potentially buffering against declines in larval fish survival, recruitment, and fisheries. Our model results are supported by empirical evidence from ecosystems with multidecadal observations of both fish and phytoplankton phenology.


Asunto(s)
Cambio Climático , Fitoplancton , Animales , Ecosistema , Explotaciones Pesqueras , Peces , Estaciones del Año
5.
Global Biogeochem Cycles ; 33(11): 1370-1388, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32025087

RESUMEN

New estimates of pCO2 from profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project have demonstrated the importance of wintertime outgassing south of the Polar Front, challenging the accepted magnitude of Southern Ocean carbon uptake (Gray et al., 2018, https://doi:10.1029/2018GL078013). Here, we put 3.5 years of SOCCOM observations into broader context with the global surface carbon dioxide database (Surface Ocean CO2 Atlas, SOCAT) by using the two interpolation methods currently used to assess the ocean models in the Global Carbon Budget (Le Quéré et al., 2018, https://doi:10.5194/essd-10-2141-2018) to create a ship-only, a float-weighted, and a combined estimate of Southern Ocean carbon fluxes (<35°S). In our ship-only estimate, we calculate a mean uptake of -1.14 ± 0.19 Pg C/yr for 2015-2017, consistent with prior studies. The float-weighted estimate yields a significantly lower Southern Ocean uptake of -0.35 ± 0.19 Pg C/yr. Subsampling of high-resolution ocean biogeochemical process models indicates that some of the differences between float and ship-only estimates of the Southern Ocean carbon flux can be explained by spatial and temporal sampling differences. The combined ship and float estimate minimizes the root-mean-square pCO2 difference between the mapped product and both data sets, giving a new Southern Ocean uptake of -0.75 ± 0.22 Pg C/yr, though with uncertainties that overlap the ship-only estimate. An atmospheric inversion reveals that a shift of this magnitude in the contemporary Southern Ocean carbon flux must be compensated for by ocean or land sinks within the Southern Hemisphere.

6.
Proc Natl Acad Sci U S A ; 112(51): 15591-6, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644555

RESUMEN

The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link between changes in temperature and precipitation and terrestrial processes remains uncertain. Here, we combine atmospheric mass balance, remote sensing-modeled datasets of vegetation C uptake, and climate datasets to characterize the temporal variability of the terrestrial C sink and determine the dominant climate drivers of this variability. We show that the interannual variability of global land C sink has grown by 50-100% over the past 50 y. We further find that interannual land C sink variability is most strongly linked to tropical nighttime warming, likely through respiration. This apparent sensitivity of respiration to nighttime temperatures, which are projected to increase faster than global average temperatures, suggests that C stored in tropical forests may be vulnerable to future warming.


Asunto(s)
Secuestro de Carbono , Calentamiento Global , Clima Tropical , Ecosistema
7.
Glob Chang Biol ; 23(10): 4019-4028, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28657206

RESUMEN

Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO2 , at which blood is 50% saturated (P50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P50 depths (i.e., the vertical position in the water column at which ambient pO2 is equal to species-specific blood P50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats.


Asunto(s)
Cambio Climático , Atún , Migración Animal , Animales , Clima , Ecosistema , Oxígeno , Océano Pacífico , Dinámica Poblacional
8.
Ecol Appl ; 24(4): 699-715, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24988769

RESUMEN

Efforts to test and improve terrestrial biosphere models (TBMs) using a variety of data sources have become increasingly common. Yet, geographically extensive forest inventories have been under-exploited in previous model-data fusion efforts. Inventory observations of forest growth, mortality, and biomass integrate processes across a range of timescales, including slow timescale processes such as species turnover, that are likely to have important effects on ecosystem responses to environmental variation. However, the large number (thousands) of inventory plots precludes detailed measurements at each location, so that uncertainty in climate, soil properties, and other environmental drivers may be large. Errors in driver variables, if ignored, introduce bias into model-data fusion. We estimated errors in climate and soil drivers at U.S. Forest Inventory and Analysis (FIA) plots, and we explored the effects of these errors on model-data fusion with the Geophysical Fluid Dynamics Laboratory LM3V dynamic global vegetation model. When driver errors were ignored or assumed small at FIA plots, responses of biomass production in LM3V to precipitation and soil available water capacity appeared steeper than the corresponding responses estimated from FIA data. These differences became nonsignificant if driver errors at FIA plots were assumed to be large. Ignoring driver errors when optimizing LM3V parameter values yielded estimates for fine-root allocation that were larger than biometric estimates, which is consistent with the expected direction of bias. To explore whether complications posed by driver errors could be circumvented by relying on intensive study sites where driver errors are small, we performed a power analysis. To accurately quantify the response of biomass production to spatial variation in mean annual precipitation within the eastern United States would require at least 40 intensive study sites, which is larger than the number of sites typically available for individual biomes in existing plot networks. Driver errors may be accommodated by several existing model-data fusion approaches, including hierarchical Bayesian methods and ensemble filtering methods; however, these methods are computationally expensive. We propose a new approach, in which the TBM functional response is fit directly to the driver-error-corrected functional response estimated from data, rather than to the raw observations.


Asunto(s)
Biodiversidad , Modelos Biológicos , Árboles , Lluvia , Suelo , Temperatura , Agua
9.
Nature ; 445(7124): 163-7, 2007 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17215838

RESUMEN

Nitrogen fixation is crucial for maintaining biological productivity in the oceans, because it replaces the biologically available nitrogen that is lost through denitrification. But, owing to its temporal and spatial variability, the global distribution of marine nitrogen fixation is difficult to determine from direct shipboard measurements. This uncertainty limits our understanding of the factors that influence nitrogen fixation, which may include iron, nitrogen-to-phosphorus ratios, and physical conditions such as temperature. Here we determine nitrogen fixation rates in the world's oceans through their impact on nitrate and phosphate concentrations in surface waters, using an ocean circulation model. Our results indicate that nitrogen fixation rates are highest in the Pacific Ocean, where water column denitrification rates are high but the rate of atmospheric iron deposition is low. We conclude that oceanic nitrogen fixation is closely tied to the generation of nitrogen-deficient waters in denitrification zones, supporting the view that nitrogen fixation stabilizes the oceanic inventory of fixed nitrogen over time.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Biomasa , Hierro/metabolismo , Océanos y Mares , Océano Pacífico , Fósforo/metabolismo , Plancton/metabolismo , Movimientos del Agua
10.
Proc Natl Acad Sci U S A ; 107(43): 18348-53, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937899

RESUMEN

Studies diverge substantially on the actual magnitude of the North American carbon budget. This is due to the lack of appropriate data and also stems from the difficulty to properly model all the details of the flux distribution and transport inside the region of interest. To sidestep these difficulties, we use here a simple budgeting approach to estimate land-atmosphere fluxes across North America by balancing the inflow and outflow of CO(2) from the troposphere. We base our study on the unique sampling strategy of atmospheric CO(2) vertical profiles over North America from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory aircraft network, from which we infer the three-dimensional CO(2) distribution over the continent. We find a moderate sink of 0.5 ± 0.4 PgC y(-1) for the period 2004-2006 for the coterminous United States, in good agreement with the forest-inventory-based estimate of the first North American State of the Carbon Cycle Report, and averaged climate conditions. We find that the highest uptake occurs in the Midwest and in the Southeast. This partitioning agrees with independent estimates of crop uptake in the Midwest, which proves to be a significant part of the US atmospheric sink, and of secondary forest regrowth in the Southeast. Provided that vertical profile measurements are continued, our study offers an independent means to link regional carbon uptake to climate drivers.

11.
Nature ; 444(7120): 752-5, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17151666

RESUMEN

Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.


Asunto(s)
Clima , Ecosistema , Fitoplancton/metabolismo , Animales , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cadena Alimentaria , Efecto Invernadero , Calor , Océanos y Mares , Fotosíntesis , Agua de Mar/química
12.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16193043

RESUMEN

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Asunto(s)
Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Ecosistema , Agua de Mar/química , Ácidos/análisis , Animales , Antozoos/metabolismo , Atmósfera/química , Carbonato de Calcio/análisis , Carbonato de Calcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Océanos y Mares , Plancton/química , Plancton/metabolismo , Termodinámica , Factores de Tiempo , Incertidumbre
13.
PLoS One ; 16(9): e0257492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34547016

RESUMEN

Viruses have been implicated in cancer development in both humans and animals. The role of viruses in cancer is typically to initiate cellular transformation through cellular DNA damage, although specific mechanisms remain unknown. Silent and long-term viral infections need to be present, in order to initiate cancer disease. In efforts to establish a causative role of viruses, first is needed to demonstrate the strength and consistency of associations in different populations. The aim of this study was to determine the association of bovine leukemia virus (BLV), a causative agent of leukemia in cattle, with breast cancer and its biomarkers used as prognosis of the severity of the disease (Ki67, HER2, hormonal receptors) in Colombian women. An unmatched, observational case-control study was conducted among women undergoing breast surgery between 2016-2018. Malignant samples (n = 75) were considered as cases and benign samples (n = 83) as controls. Nested-liquid PCR, in-situ PCR and immunohistochemistry were used for viral detection in blood and breast tissues. For the risk assessment, only BLV positive samples from breast tissues were included in the analysis. BLV was higher in cases group (61.3%) compared with controls (48.2%), with a statistically significant association between the virus and breast cancer in the unconditional logistic regression (adjusted-OR = 2.450,95%CI:1.088-5.517, p = 0.031). In this study, BLV was found in both blood and breast tissues of participants and an association between breast cancer and the virus was confirmed in Colombia, as an intermediate risk factor.


Asunto(s)
Neoplasias de la Mama/patología , Virus de la Leucemia Bovina/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Mama/patología , Mama/virología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/virología , Estudios de Casos y Controles , Colombia , Femenino , Humanos , Virus de la Leucemia Bovina/genética , Modelos Logísticos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Pronóstico , ARN Viral/análisis , ARN Viral/sangre , ARN Viral/metabolismo , Curva ROC , Factores de Riesgo , Adulto Joven
14.
Nat Commun ; 11(1): 5364, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097697

RESUMEN

Over the last ten years, satellite and geographically constrained in situ observations largely focused on the northern hemisphere have suggested that annual phytoplankton biomass cycles cannot be fully understood from environmental properties controlling phytoplankton division rates (e.g., nutrients and light), as they omit the role of ecological and environmental loss processes (e.g., grazing, viruses, sinking). Here, we use multi-year observations from a very large array of robotic drifting floats in the Southern Ocean to determine key factors governing phytoplankton biomass dynamics over the annual cycle. Our analysis reveals seasonal phytoplankton accumulation ('blooming') events occurring during periods of declining modeled division rates, an observation that highlights the importance of loss processes in dictating the evolution of the seasonal cycle in biomass. In the open Southern Ocean, the spring bloom magnitude is found to be greatest in areas with high dissolved iron concentrations, consistent with iron being a well-established primary limiting nutrient in this region. Under ice observations show that biomass starts increasing in early winter, well before sea ice begins to retreat. The average theoretical sensitivity of the Southern Ocean to potential changes in seasonal nutrient and light availability suggests that a 10% change in phytoplankton division rate may be associated with a 50% reduction in mean bloom magnitude and annual primary productivity, assuming simple changes in the seasonal magnitude of phytoplankton division rates. Overall, our results highlight the importance of quantifying and accounting for both division and loss processes when modeling future changes in phytoplankton biomass cycles.


Asunto(s)
Biomasa , Fitoplancton/crecimiento & desarrollo , Estaciones del Año , Agua de Mar/microbiología , Biodiversidad , Carbono/análisis , Clorofila/análisis , Clima , Ecología , Cubierta de Hielo , Luz , Biología Marina , Meteorología , Nutrientes , Océanos y Mares , Dinámica Poblacional , Microbiología del Agua
15.
Nat Clim Chang ; 9: 719-725, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534491

RESUMEN

Attribution of anthropogenically-forced trends in the climate system requires understanding when and how such signals will emerge from natural variability. We apply time-of-emergence diagnostics to a Large Ensemble of an Earth System Model, providing both a conceptual framework for interpreting the detectability of anthropogenic impacts in the ocean carbon cycle and observational sampling strategies required to achieve detection. We find emergence timescales ranging from under a decade to over a century, a consequence of the time-lag between chemical and radiative impacts of rising atmospheric CO2 on the ocean. Processes sensitive to carbonate-chemical changes emerge rapidly, such as impacts of acidification on the calcium-carbonate pump (10 years for the globally-integrated signal, 9-18 years regionally-integrated), and the invasion flux of anthropogenic CO2 into the ocean (14 globally, 13-26 regionally). Processes sensitive to the ocean's physical state, such as the soft-tissue pump, which depends on nutrients supplied through circulation, emerge decades later (23 globally, 27-85 regionally).

16.
Nat Commun ; 9(1): 209, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335401

RESUMEN

The original version of this Article contained errors in Fig. 6. In panel a, the grey highlights obscured the curves for CESM, CM2.6 and SOSE, and the labels indicating SWIR, KP, MR, PAR, and DP were inadvertently omitted. These have now been corrected in both the PDF and HTML versions of the Article.

17.
Nat Commun ; 8: 14682, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28267144

RESUMEN

Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.


Asunto(s)
Cambio Climático , Ecosistema , Océanos y Mares , Factores de Tiempo
18.
Nat Commun ; 8(1): 172, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28769035

RESUMEN

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

19.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130046, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891388

RESUMEN

The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO2. Up to half of the excess CO2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO2 flux. In this work, we review current estimates of the CO2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales.


Asunto(s)
Dióxido de Carbono/análisis , Cambio Climático , Modelos Teóricos , Océanos y Mares , Agua de Mar/química , Regiones Árticas , Cubierta de Hielo/química , Viento
20.
Science ; 341(6151): 1239-42, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24031017

RESUMEN

Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity-the rate and direction that climate shifts across the landscape-can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.


Asunto(s)
Adaptación Fisiológica , Distribución Animal , Organismos Acuáticos/fisiología , Calentamiento Global , Animales , Recolección de Datos , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA