Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203675

RESUMEN

In the retina, retinoids involved in vision are under constant threat of oxidation, and their oxidation products exhibit deleterious properties. Using pulse radiolysis, this study determined that the bimolecular rate constants of scavenging cation radicals of retinoids by taurine are smaller than 2 × 107 M-1s-1 whereas lutein scavenges cation radicals of all three retinoids with the bimolecular rate constants approach the diffusion-controlled limits, while zeaxanthin is only 1.4-1.6-fold less effective. Despite that lutein exhibits greater scavenging rate constants of retinoid cation radicals than other antioxidants, the greater concentrations of ascorbate in the retina suggest that ascorbate may be the main protectant of all visual cycle retinoids from oxidative degradation, while α-tocopherol may play a substantial role in the protection of retinaldehyde but is relatively inefficient in the protection of retinol or retinyl palmitate. While the protection of retinoids by lutein and zeaxanthin appears inefficient in the retinal periphery, it can be quite substantial in the macula. Although the determined rate constants of scavenging the cation radicals of retinol and retinaldehyde by dopa-melanin are relatively small, the high concentration of melanin in the RPE melanosomes suggests they can be scavenged if they are in proximity to melanin-containing pigment granules.


Asunto(s)
Retinoides , Vitamina A , Melaninas , Retinaldehído , Luteína , Zeaxantinas , Taurina , Cationes
2.
Artículo en Inglés | MEDLINE | ID: mdl-38803190

RESUMEN

Melanin, particularly eumelanin, is commonly viewed as an efficient antioxidant and photoprotective pigment. Nonetheless, the ability of melanin to photogenerate reactive oxygen species and sensitize the formation of cyclobutane pyrimidine dimers may contribute to melanin-dependent phototoxicity. The phototoxic potential of melanin depends on a variety of factors, including molecular composition, redox state, and degree of aggregation. Using complementary spectroscopic and analytical methods we analyzed the physicochemical properties of Dopa-melanin, a synthetic model of eumelanin, subjected to oxidative degradation induced by aerobic photolysis or exposure to 0.1 M hydrogen peroxide. Both modes of oxidative degradation were accompanied by dose-dependent bleaching of melanin and irreversible modifications of its paramagnetic, ion- and electron-exchange and antioxidant properties. Bleached melanin exhibited enhanced efficiency to photogenerate singlet oxygen in both UVA and short-wavelength visible light. Although chemical changes of melanin subunits, including a relative increase of DHICA content and disruption of melanin polymer induced by oxidative degradation were considered, these two mechanisms may not be sufficient for a satisfactory explanation of the elevated photosensitizing ability of the bleached eumelanin. This study points out possible adverse changes in the photoprotective and antioxidant properties of eumelanin that could occur in pigmented tissues after exposure to high doses of intense solar radiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA