Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Physiol Genomics ; 56(5): 397-408, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497119

RESUMEN

Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.


Asunto(s)
Metilación de ADN , Transcriptoma , Porcinos/genética , Animales , Transcriptoma/genética , Metilación de ADN/genética , Ingestión de Alimentos/genética , Perfilación de la Expresión Génica , Duodeno , Alimentación Animal
2.
Genet Sel Evol ; 56(1): 16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424485

RESUMEN

BACKGROUND: Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state. RESULTS: We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs. CONCLUSIONS: We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.


Asunto(s)
Mortinato , Embarazo , Humanos , Femenino , Animales , Ovinos/genética , Haplotipos , Animales Recién Nacidos , Mortinato/genética , Mortinato/veterinaria , Homocigoto , Genotipo
3.
Anim Genet ; 55(4): 644-657, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922751

RESUMEN

We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.


Asunto(s)
Oveja Doméstica , Animales , Femenino , Oveja Doméstica/genética , Embarazo , Duplicación de Gen , Inseminación Artificial/veterinaria , Homocigoto , Mutación del Sistema de Lectura , Aborto Veterinario/genética , Haplotipos , Ovinos/genética
4.
Genet Sel Evol ; 53(1): 86, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749642

RESUMEN

BACKGROUND: Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 1000-genome resequencing program designed to understand the consequences of domestication and breeding on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the genomes of a set of species representative of the genus Capra. FINDINGS: A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals representing eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms (SNPs) and 13,607,850 insertion-deletions (InDels) by aligning these sequences to the latest version of the goat reference genome (ARS1). A Neighbor-joining tree based on Reynolds genetic distances showed that goats from Africa, Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin. CONCLUSIONS: We report on an unprecedented international effort to characterize the genome-wide diversity of domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the demographic and selection processes associated with post-domestication history have shaped the diversity of this species. Data generated for the project will also be extremely useful to identify deleterious mutations and polymorphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in genomic prediction and genome-wide association studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Domesticación , Variación Genética , Genómica , Cabras/genética
5.
Genet Sel Evol ; 51(1): 5, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760210

RESUMEN

BACKGROUND: The identification of loci associated with resistance to mastitis or of the causative mutations may be helpful in breeding programs for dairy sheep as it is for cattle worldwide. Seven genomic regions that control milk somatic cell counts, an indirect indicator of udder infection, have already been identified in sheep (Spanish Churra, French Lacaune and Italian Sardinian-Lacaune backcross populations). In this study, we used a 960 custom-designed ovine single nucleotide polymorphism (SNP) chip in Lacaune and Manech Tête Rousse dairy sheep to validate these seven genomic regions associated with mastitis. RESULTS: The most significant SNP (rs868996547) on Ovis aries chromosome (OAR) 3 was a previously described mutation in the suppressor of cytokine signalling 2 (SOCS2) gene. An antagonist effect of this causal candidate between health and growth in Lacaune sheep was confirmed. Effects of the mutation on the infectious status of the udder, i.e. increases in milk somatic cell counts and bacteria shedding, were also identified. This SNP was not present in the data available on Manech Tête Rousse. Three other regions associated with mastitis were also confirmed on OAR16 (Manech Tête Rousse), 19 (Lacaune) and 2 (both breeds). For the OAR2 region, we validated previously detected SNPs in several other breeds (Sarda, Churra, and Chios). For significant SNPs in the four mastitis regions, the effect varied from 0.24 to 0.67 phenotypic standard deviation of the traits. Two of the mastitis quantitative trait loci (QTL) regions (OAR2 and 16) that we validated here were also associated in opposite ways with milk production traits in both populations. CONCLUSIONS: These results indicate, at least in part, a genomic basis for the trade-off between milk production and mastitis resistance. Four of the seven mastitis QTL regions that were previously identified in independent populations, were confirmed in this study, which demonstrates partial sharing of mastitis-related genetic mechanisms between different distant dairy sheep populations.


Asunto(s)
Resistencia a la Enfermedad/genética , Mastitis/genética , Sitios de Carácter Cuantitativo , Enfermedades de las Ovejas/genética , Ovinos/genética , Animales , Femenino , Mastitis/veterinaria , Polimorfismo de Nucleótido Simple , Ovinos/inmunología
6.
Reprod Domest Anim ; 54(3): 531-537, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30561778

RESUMEN

Mutations in the FecL locus are associated with large variation in ovulation rate and litter size in the French Lacaune sheep breed. It has been shown that the B4GALNT2 gene within the FecL locus is most likely responsible for the high fecundity in the French breed. In this study, we have highlighted the segregation of the FecLL mutation within the B4GALNT2 gene in North African sheep breeds and notably in the highly prolific D'man breed. Genotyping of a sample of 183 Tunisian D'man individuals revealed a high frequency (0.65) of the prolific allele FecLL which was attributed to the adoption of a decades-old breeding strategy based on the selection of ewe lambs born from large litter size. Homozygous LL ewes showed a significantly increased litter size compared to heterozygous and non-carrier ewes (FecLL /FecLL  = 2.47 ± 0.09 vs. FecLL /FecL+  = 2.23 ± 0.09, p < 0.05 and FecL+ /FecL+  = 1.93 ± 0.18, p < 0.01). The presence of the FecLL polymorphism in both D'man and Lacaune breeds argues for an ancestral origin of this mutation and brings an answer to the old question of the genetic determinism of the extreme prolificacy of the D'man ewes. The results of this study can help to establish planned genotype-based mating allowing both higher profit for the breeders and an optimal management of the FecLL mutation in D'man sheep populations.


Asunto(s)
N-Acetilgalactosaminiltransferasas/genética , Ovinos/genética , Alelos , Animales , Cruzamiento , Femenino , Fertilidad/genética , Frecuencia de los Genes , Genética de Población , Técnicas de Genotipaje/veterinaria , Tamaño de la Camada/genética , Masculino , Mutación , Embarazo
7.
Mol Biol Evol ; 34(7): 1722-1729, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379502

RESUMEN

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.


Asunto(s)
Oveja Doméstica/genética , Ovinos/genética , Animales , Evolución Biológica , Proteínas Portadoras/genética , ADN Antiguo , Variación Genética/genética , Genoma , Estudio de Asociación del Genoma Completo/métodos , Mutación , Fenotipo , Factores de Transcripción/genética , Lana
8.
PLoS Genet ; 11(12): e1005629, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26658352

RESUMEN

Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host's inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway.


Asunto(s)
Peso Corporal/genética , Lactancia/genética , Glándulas Mamarias Humanas/metabolismo , Mastitis/genética , Mutación Puntual , Proteínas Supresoras de la Señalización de Citocinas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Humanos , Masculino , Glándulas Mamarias Humanas/patología , Glándulas Mamarias Humanas/fisiología , Mastitis/veterinaria , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Unión Proteica , Sitios de Carácter Cuantitativo , Ovinos , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
9.
Physiol Genomics ; 49(2): 67-80, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940565

RESUMEN

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.


Asunto(s)
Atresia Folicular/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Folículo Ovárico/metabolismo , Sus scrofa/genética , Animales , Apoptosis/genética , Biomarcadores/metabolismo , Análisis por Conglomerados , Regulación hacia Abajo/genética , Femenino , Ontología de Genes , Transducción de Señal/genética , Regulación hacia Arriba/genética
11.
PLoS Genet ; 9(4): e1003482, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637641

RESUMEN

Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E(-05) and 1E(-07). The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecX(Gr) and FecX(O) were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (p FecX (Gr) = 5.98E(-06) and p FecX(O) = 2.55E(-08)). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecX(Gr)/FecX(Gr), LS = 2.50 ± 0.65 versus FecX(+)/FecX(Gr), LS = 1.93 ± 0.42, p<1E(-03) and FecX(O)/FecX(O), OR = 3.28 ± 0.85 versus FecX(+)/FecX(O), OR = 2.02 ± 0.47, p<1E(-03)). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecX(Gr)/FecX(Gr) Grivette and homozygous FecX(O)/FecX(O) Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women's fertility disorders.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Ovulación/genética , Animales , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Tamaño de la Camada/genética , Mutación , Fenotipo , Ovinos
12.
PLoS Genet ; 9(9): e1003809, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086150

RESUMEN

Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecL(L) . Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecL(L) carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecL(L) . B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecL(L) /FecL(L) ewes at mRNA and protein levels. In FecL(L) carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.


Asunto(s)
Regulación de la Expresión Génica , Infertilidad Femenina/genética , N-Acetilgalactosaminiltransferasas/biosíntesis , Oveja Doméstica/genética , Animales , Femenino , Fertilidad/genética , Fertilidad/fisiología , Glicosilación , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Infertilidad Femenina/patología , Hormona Luteinizante/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Ovulación/genética , Ovulación/metabolismo , ARN Mensajero/genética , Oveja Doméstica/fisiología
13.
BMC Genomics ; 14: 904, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24350644

RESUMEN

BACKGROUND: Successful early folliculogenesis is crucial for female reproductive function. It requires appropriate gene specific expression of the different types of ovarian cells at different developmental stages. To date, most gene expression studies on the ovary were conducted in rodents and did not distinguish the type of cell. In mono-ovulating species, few studies have addressed gene expression profiles and mainly concerned human oocytes. RESULTS: We used a laser capture microdissection method combined with RNA-seq technology to explore the transcriptome in oocytes and granulosa cells (GCs) during development of the sheep ovarian follicle. We first documented the expression profile of 15 349 genes, then focused on the 5 129 genes showing differential expression between oocytes and GCs. Enriched functional categories such as oocyte meiotic arrest and GC steroid synthesis reflect two distinct cell fates. We identified the implication of GC signal transduction pathways such as SHH, WNT and RHO GTPase. In addition, signaling pathways (VEGF, NOTCH, IGF1, etc.) and GC transzonal projections suggest the existence of complex cell-cell interactions. Finally, we highlighted several transcription regulators and specifically expressed genes that likely play an important role in early folliculogenesis. CONCLUSIONS: To our knowledge, this is the first comprehensive exploration of transcriptomes derived from in vivo oocytes and GCs at key stages in early follicular development in sheep. Collectively, our data advance our understanding of early folliculogenesis in mono-ovulating species and will be a valuable resource for unraveling human ovarian dysfunction such as premature ovarian failure (POF).


Asunto(s)
Regulación de la Expresión Génica , Folículo Ovárico/fisiología , Transcriptoma , Animales , Comunicación Celular/genética , Análisis por Conglomerados , Biología Computacional , Femenino , Células de la Granulosa/metabolismo , Humanos , Anotación de Secuencia Molecular , Oocitos/metabolismo , Especificidad de Órganos/genética , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
BMC Res Notes ; 15(1): 282, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986355

RESUMEN

OBJECTIVE: Causal mutations for major genes that underlie a broad range of morphological traits are often located within exons of genes that then affect protein functions. Non-model organism genetic studies are not easy to perform due to the lack of genome-wide molecular tools such as SNP genotyping array. Genotyping-By-Sequencing (GBS) methods offer an alternative. Consequently, we used this approach that is focused on the exome to target and identify major genes in rabbit populations. Data description We used a heterologous enrichment method before sequencing, allowing us to capture the rabbit exome using the marketed human panel since mammal protein coding genes are well conserved across the phylogenic tree of species. This targeted strategy was performed on 52 French rabbits from 5 different French strains (Californian, New-Zealand, Castor, Chinchilla and Laghmere). We generated 3.4 billion sequencing reads and approximately 29-140 million of reads per DNA sample. The expected exome coverage per sample ranged between 118 and 566X. The present dataset could be useful for the scientific community working on rabbit species in order to (i) improve the annotation of the rabbit reference genome Oryctolagus cuniculus (OryCun2.0), (ii) enrich the characterization of polymorphisms segregating in rabbits and (iii) evaluate the genetic biodiversity in different rabbit strains. Raw sequences were deposited in the European Nucleotide Archive (ENA) at the European Molecular Biology Laboratory- European Bioinformatics Institute (EMBL-EBI) data portal under bioproject accession number PRJEB37917.


Asunto(s)
Exoma , Polimorfismo de Nucleótido Simple , Animales , Exoma/genética , Exones , Genómica , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mamíferos/genética , Conejos
15.
BMC Genomics ; 12: 417, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21851638

RESUMEN

BACKGROUND: Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. RESULTS: We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH).A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. CONCLUSIONS: The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Captura por Microdisección con Láser/métodos , Oocitos/citología , Oocitos/metabolismo , Ovinos/genética , Animales , Animales Recién Nacidos , Bovinos , Separación Celular , Femenino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ovinos/crecimiento & desarrollo
16.
Genes (Basel) ; 13(1)2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-35052387

RESUMEN

We recently demonstrated that the Lacaune deficient homozygous haplotype 6 (LDHH6) potentially hosts a recessive perinatal lethal mutation in Lacaune dairy sheep mapped on OAR3. In the present study, we have analyzed the whole-genome sequences of two Lacaune ram heterozygous carriers of LDHH6. After variant calling and filtering against the variants of 86 non-carrier rams, we have identified a single nucleotide variant (SNV) in the two LDHH6 carriers whose variant allele induced a premature stop codon (p.Glu111*) in the Coiled-Coil Domain Containing 65 (CCDC65) gene. CCDC65 is involved in the assembly of the nexin-dynein regulatory complex for the formation of microtubules in ciliated cells. In order to identify the phenotype in homozygous sheep, we generated at-risk matings (n = 17) between rams and ewes heterozygous for the candidate variant in CCDC65. A total of 16 lambs were born alive with five genotyped as homozygous carriers. The homozygous lambs suffered from respiratory problems, and four of them died within the first month of life. At necropsy, we observed a broad hepatization of lung lobes possibly induced by infectious pneumonia. The management of this lethal recessive allele (frequency of 0.06) through reasoned mating in the Lacaune sheep selection schemes could reduce lamb mortality by 2%.


Asunto(s)
Codón sin Sentido , Glicoproteínas/genética , Haplotipos , Fenotipo , Insuficiencia Respiratoria/mortalidad , Ovinos/genética , Animales , Femenino , Masculino , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología
17.
J Clin Endocrinol Metab ; 106(3): e1271-e1289, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33247926

RESUMEN

PURPOSE: A protective effect of anti-Müllerian hormone (AMH) on follicle atresia was recently demonstrated using long-term treatments, but this effect has never been supported by mechanistic studies. This work aimed to gain an insight into the mechanism of action of AMH on follicle atresia and on how this could account for the increased follicle pool observed in women with polycystic ovary syndrome (PCOS). METHODS: In vivo and in vitro experiments were performed to study the effects of AMH on follicle atresia and on the proliferation and apoptosis of granulosa cells (GCs). RNA-sequencing was carried out to identify new AMH target genes in GCs. The expression of some of these genes in GCs from control and PCOS women was compared using microfluidic real time quantitative RT-PCR. RESULTS: A short-term AMH treatment prevented follicle atresia in prepubertal mice. Consistent with this result, AMH inhibited apoptosis and promoted proliferation of different models of GCs. Moreover, integrative biology analyses of 965 AMH target genes identified in 1 of these GC models, confirmed that AMH had initiated a gene expression program favoring cell survival and proliferation. Finally, on 43 genes selected among the most up- and down-regulated AMH targets, 8 were up-regulated in GCs isolated from PCOS women, of which 5 are involved in cell survival. MAIN CONCLUSIONS: Our results provide for the first time cellular and molecular evidence that AMH protects follicles from atresia by controlling GC survival and suggest that AMH could participate in the increased follicle pool of PCOS patients.


Asunto(s)
Hormona Antimülleriana/farmacología , Apoptosis , Células de la Granulosa/efectos de los fármacos , Síndrome del Ovario Poliquístico/patología , Adulto , Animales , Hormona Antimülleriana/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/patología , Células de la Granulosa/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo
18.
Front Genet ; 11: 585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636872

RESUMEN

The search for the genetic determinism of prolificacy variability in sheep has evidenced several major mutations in genes playing a crucial role in the control of ovulation rate. In the Noire du Velay (NV) sheep population, a recent genetic study has evidenced the segregation of such a mutation named FecL L . However, based on litter size (LS) records of FecL L non-carrier ewes, the segregation of a second prolificacy major mutation was suspected in this population. In order to identify this mutation, we have combined a case/control genome-wide association study with ovine 50k SNP chip genotyping, whole genome sequencing, and functional analyses. A new single nucleotide polymorphism (OARX:50977717T > A, NC_019484) located on the X chromosome upstream of the BMP15 gene was evidenced to be highly associated with the prolificacy variability (P = 1.93E-11). The variant allele was called FecX N and shown to segregate also in the Blanche du Massif Central (BMC) sheep population. In both NV and BMC, the FecX N allele frequency was estimated close to 0.10, and its effect on LS was estimated at +0.20 lamb per lambing at the heterozygous state. Homozygous FecX N carrier ewes were fertile with increased prolificacy in contrast to numerous mutations affecting BMP15. At the molecular level, FecX N was shown to decrease BMP15 promoter activity and supposed to impact BMP15 expression in the oocyte. This regulatory action was proposed as the causal mechanism for the FecX N mutation to control ovulation rate and prolificacy in sheep.

19.
PLoS One ; 14(6): e0218719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31220166

RESUMEN

Gastrointestinal nematodes (GIN) are a major constraint for small ruminant production. Due to the rise of anthelmintic resistance throughout the world, alternative control strategies are needed. The development of GIN resistance breeding programs is a promising strategy. However, a better understanding of the mechanisms underlying genetic resistance might lead to more effective breeding programmes. In this study, we compare transcriptome profiling of abomasal mucosa and lymph node tissues from non-infected, resistant and susceptible infected Creole goats using RNA-sequencing. A total of 24 kids, 12 susceptible and 12 GIN resistant based on the estimated breeding value, were infected twice with 10,000 L3 Haemonchus contortus. Physiological and parasitological parameters were monitored during infection. Seven weeks after the second infection, extreme kids (n = 6 resistant and 6 susceptible), chosen on the basis of the fecal egg counts (FEC), and 3 uninfected control animals were slaughtered. Susceptible kids had significantly higher FEC compared with resistant kids during the second infection with no differences in worm burden, male and female worm count or establishment rate. A higher number of differentially expressed genes (DEG) were identified in infected compared with non-infected animals in both abomasal mucosa (792 DEG) and lymph nodes (1726 DEG). There were fewer DEG in resistant versus susceptible groups (342 and 450 DEG, in abomasal mucosa and lymph nodes respectively). 'Cell cycle' and 'cell death and survival' were the main identified networks in mucosal tissue when comparing infected versus non-infected kids. Antigen processing and presentation of peptide antigen via major histocompatibility complex class I were in the top biological functions for the DEG identified in lymph nodes. The TGFß1 gene was one of the top 5 upstream DEG in mucosal tissue. Our results are one of the fist investigating differences in the expression profile induced by GIN infection in goats.


Asunto(s)
Enfermedades Gastrointestinales/genética , Enfermedades de las Cabras/genética , Cabras , Infecciones por Nematodos/genética , Transcriptoma , Animales , Susceptibilidad a Enfermedades/parasitología , Femenino , Enfermedades Gastrointestinales/parasitología , Enfermedades Gastrointestinales/veterinaria , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/parasitología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Enfermedades de las Cabras/parasitología , Cabras/genética , Cabras/parasitología , Masculino , Infecciones por Nematodos/veterinaria , Recuento de Huevos de Parásitos/veterinaria
20.
Theriogenology ; 108: 103-117, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29207291

RESUMEN

Ovarian follicular growth occurs in both the follicular and luteal phases of the estrous cycle but in very different endocrine contexts. In both phases, many small antral follicles with similar morphologic and histologic characteristics are present within the ovaries as a reserve for the terminal folliculogenesis. However, there are several gaps in our molecular knowledge of the gene expression profiles of small antral follicles in the follicular and luteal phases. The aim of the present study was to use RNA sequencing to compare and analyze the global transcriptional profile of ovine granulosa cells collected from small antral follicles (1-3 mm) either during the follicular or the luteal phase of the estrous cycle, with the hypothesis that they should be differential. We identified 663 genes whose mRNA was differentially expressed or accumulated in the granulosa cell layer of small antral follicles in the two phases. A comprehensive interpretation of these data was performed through integrative analyses (Gene Ontology, Ingenuity Pathway Analysis) and the exploitation of already available transcriptomic data on follicular growth and atresia. In particular, we observed that the contrasted endocrine context between follicular and luteal phases may have an impact on estradiol, follicle-stimulating hormone (FSH), and on the activin/inhibin signaling pathways. Furthermore, we reveal the possible initiation of early follicular atresia in small antral follicles during the follicular phase in interaction with the presence of immune cells. This study provides new insights into the gene expression profile in ovine granulosa cells, and we suggest that these molecular changes may have an implication at the time of follicle selection.


Asunto(s)
Fase Folicular/fisiología , Células de la Granulosa/metabolismo , Fase Luteínica/fisiología , Ovinos/metabolismo , Transcriptoma/genética , Animales , Femenino , Regulación de la Expresión Génica , ARN Mensajero , Análisis de Secuencia de ARN , Ovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA