Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genes Cells ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245559

RESUMEN

Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.

2.
Mutagenesis ; 36(5): 331-338, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34216473

RESUMEN

Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) i.e. deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1-/-/XPA-/-), the core factors of base excision repair (BER) and nucleotide excision repair (NER), respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focussed on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1-/-/XPA-/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1-/-/XPA-/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER-deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.


Asunto(s)
Daño del ADN/efectos de los fármacos , Reparación del ADN , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Mutación/efectos de los fármacos , Timidina Quinasa/genética , Carcinógenos/química , Carcinógenos/toxicidad , Línea Celular , Trastornos por Deficiencias en la Reparación del ADN , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Mutagenicidad/métodos , Mutágenos/química
3.
J Biol Chem ; 291(46): 24314-24323, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27660390

RESUMEN

Numerous ribonucleotides are incorporated into the genome during DNA replication. Oxidized ribonucleotides can also be erroneously incorporated into DNA. Embedded ribonucleotides destabilize the structure of DNA and retard DNA synthesis by DNA polymerases (pols), leading to genomic instability. Mammalian cells possess translesion DNA synthesis (TLS) pols that bypass DNA damage. The mechanism of TLS and repair of oxidized ribonucleotides remains to be elucidated. To address this, we analyzed the miscoding properties of the ribonucleotides riboguanosine (rG) and 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG) during TLS catalyzed by the human TLS pols κ and η in vitro The primer extension reaction catalyzed by human replicative pol α was strongly blocked by 8-oxo-rG. pol κ inefficiently bypassed rG and 8-oxo-rG compared with dG and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), whereas pol η easily bypassed the ribonucleotides. pol α exclusively inserted dAMP opposite 8-oxo-rG. Interestingly, pol κ preferentially inserted dCMP opposite 8-oxo-rG, whereas the insertion of dAMP was favored opposite 8-oxo-dG. In addition, pol η accurately bypassed 8-oxo-rG. Furthermore, we examined the activity of the base excision repair (BER) enzymes 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease 1 on the substrates, including rG and 8-oxo-rG. Both BER enzymes were completely inactive against 8-oxo-rG in DNA. However, OGG1 suppressed 8-oxo-rG excision by RNase H2, which is involved in the removal of ribonucleotides from DNA. These results suggest that the different sugar backbones between 8-oxo-rG and 8-oxo-dG alter the capacity of TLS and repair of 8-oxoguanine.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN/química , Guanina/análogos & derivados , Ribonucleasa H/química , ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Guanina/química , Guanina/metabolismo , Humanos , Ribonucleasa H/metabolismo
4.
J Biol Chem ; 289(20): 13996-4008, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24695738

RESUMEN

Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase ß, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3'-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5'-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase ß activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Reparación del ADN , ADN/genética , ADN/metabolismo , Disparidad de Par Base , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , ADN/química , ADN Glicosilasas/antagonistas & inhibidores , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Timina ADN Glicosilasa/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-24211442

RESUMEN

Sodium azide is a strong mutagen which has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolized to azidoalanine, but further bioactivation to a putative ultimate mutagen as well as the nature of the induced DNA modifications leading to mutations remain elusive. In this study, mutations induced in the CAN1 gene of yeast Saccharomyces cerevisiae by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) have been sequenced. Analysis of the forward mutation spectrum to canavanine resistance revealed that AZG induced nearly exclusively G:C to A:T transitions. AZG also induced reversions to tryptophan prototrophy by base-pair substitutions in a dose-dependent manner. This unusual mutational specificity may be shared by other organic azido compounds.


Asunto(s)
Azidas/farmacología , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Glicoles de Propileno/farmacología , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Canavanina/farmacología , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Triptófano/farmacología
6.
J Biol Chem ; 287(44): 36702-10, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22989888

RESUMEN

Human 8-oxoguanine DNA glycosylase (OGG1) is a key enzyme involved in removing 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic DNA lesion generated by oxidative stress. The removal of 8-oxoG by OGG1 is affected by the local DNA sequence, and this feature most likely contributes to observed mutational hot spots in genomic DNA. To elucidate the influence of local DNA sequence on 8-oxoG excision activity of OGG1, we conducted steady-state, pre-steady-state, and single turnover kinetic evaluation of OGG1 in alternate DNA sequence contexts. The sequence context effect was studied for a mutational hot spot at a CpG dinucleotide. Altering either the global DNA sequence or the 5'-flanking unmodified base pair failed to influence the excision of 8-oxoG. Methylation of the cytosine 5' to 8-oxoG also did not affect 8-oxoG excision. In contrast, a 5'-neighboring mismatch strongly decreased the rate of 8-oxoG base removal. Substituting the 5'-C in the CpG dinucleotide with T, A, or tetrahydrofuran (i.e. T:G, A:G, and tetrahydrofuran:G mispairs) resulted in a 10-, 13-, and 4-fold decrease in the rate constant for 8-oxoG excision, respectively. A greater loss in activity was observed when T:C or A:C was positioned 5' of 8-oxoG (59- and 108-fold, respectively). These results indicate that neighboring structural abnormalities 5' to 8-oxoG deter its repair thereby enhancing its mutagenic potential.


Asunto(s)
División del ADN , ADN Glicosilasas/química , Disparidad de Par Base , Emparejamiento Base , Secuencia de Bases , Dominio Catalítico , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Polimerasa beta/química , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Humanos , Hidrólisis , Cinética , Oligonucleótidos/química , Especificidad por Sustrato
7.
Mutagenesis ; 28(1): 81-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076070

RESUMEN

Many chronic inflammatory conditions are associated with an increased risk of cancer development. At the site of inflammation, cellular DNA is damaged by hypochlorous acid (HOCl), a potent oxidant generated by myeloperoxidase. 8-Chloro-2'-deoxyguanosine (8-Cl-dG) is a major DNA adduct formed by HOCl and has been detected from the liver DNA and urine of rats administered lipopolysaccharide in an inflammation model. Thus, the 8-Cl-dG lesion may be associated with the carcinogenesis of inflamed tissues. In this study, we explored the miscoding properties of the 8-Cl-dG adduct generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotide containing a single 8-Cl-dG was prepared and used as a template in primer extension reactions catalysed by human pol α, ĸ or η. Primer extension reactions catalysed by pol α and ĸ in the presence of all four dNTPs were slightly retarded at the 8-Cl-dG site, while pol η readily bypassed the lesion. The fully extended products were analysed to quantify the miscoding frequency and specificity of 8-Cl-dG using two-phased polyacrylamide gel electrophoresis (PAGE). During the primer extension reaction in the presence of four dNTPs, pol ĸ promoted one-base deletion (6.4%), accompanied by the misincorporation of 2'-deoxyguanosine monophosphate (5.5%), dAMP (3.7%), and dTMP (3.5%) opposite the lesion. Pol α and η, on the other hand, exclusively incorporated dCMP opposite the lesion. The steady-state kinetic studies supported the results obtained from the two-phased PAGE assay. These results indicate that 8-Cl-dG is a mutagenic lesion; the miscoding frequency and specificity varies depending on the DNA polymerase used. Thus, HOCl-induced 8-Cl-dG adduct may be involved in inflammation-driven carcinogenesis.


Asunto(s)
Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Aductos de ADN/química , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Electroforesis en Gel Bidimensional , Humanos , Cinética , Oligodesoxirribonucleótidos/química
8.
Genes Environ ; 45(1): 9, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895060

RESUMEN

The Open Symposium of the Japanese Environmental Mutagen and Genome Society (JEMS) entitled "Analytical technologies to revolutionize the environmental mutagenesis and genome research -From the basics to the cutting-edge research-" was held online, on June 11th, 2022. The purpose of this symposium was to provide an opportunity to highlight the cutting-edge research for measurement technologies, and informational and computational (in silico) sciences for the purpose of applying them to deepen scientific knowledge and better understanding the relationship between genes and environmental mutagens. These advanced technologies and sciences are indispensable for the prediction of pharmacokineticses, mutagenicities of chemical substances, and structures of biomolecules including chromosomes. In this symposium, we invited six scientists who are continuing to expand the frontiers in the fields of health data science. Herein, the organizers present a summary of the symposium.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37003652

RESUMEN

The fat mass and obesity-associated protein FTO is an "eraser" of N6-methyladenosine, the most abundant mRNA modification. FTO plays important roles in tumorigenesis. However, its activities have not been fully elucidated and its possible involvement in DNA damage - the early driving event in tumorigenesis - remains poorly characterized. Here, we have investigated the role of FTO in the DNA damage response (DDR) and its underlying mechanisms. We demonstrate that FTO responds to various DNA damage stimuli. FTO is overexpressed in mice following exposure to the promutagens aristolochic acid I and benzo[a]pyrene. Knockout of the FTO gene in TK6 cells, via CRISPR/Cas9, increased genotoxicity induced by DNA damage stimuli (micronucleus and TK mutation assays). Cisplatin- and diepoxybutane-induced micronucleus frequencies and methyl methanesulfonate- and azathioprine-induced TK mutant frequencies were also higher in FTO KO cells. We investigated the potential roles of FTO in DDR. RNA sequencing and enrichment analysis revealed that FTO deletion disrupted the p38 MAPK pathway and inhibited the activation of nucleotide excision repair and cell-cycle-related pathways following cisplatin (DNA intrastrand cross-links) treatment. These effects were confirmed by western blotting and qRT-PCR. FTO deletion impaired cell-cycle arrest at the G2/M phase following cisplatin and diepoxybutane treatment (flow cytometry analysis). Our findings demonstrated that FTO is involved in several aspects of DDR, acting, at least in part, by impairing cell cycle progression.


Asunto(s)
Cisplatino , Daño del ADN , Ratones , Animales , Cisplatino/toxicidad , Ratones Noqueados , División Celular , Carcinogénesis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
10.
Nucleic Acids Res ; 38(3): 859-67, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19939936

RESUMEN

Oxidized DNA precursors can cause mutagenesis and carcinogenesis when they are incorporated into the genome. Some human Y-family DNA polymerases (Pols) can effectively incorporate 8-oxo-dGTP, an oxidized form of dGTP, into a position opposite a template dA. This inappropriate G:A pairing may lead to transversions of A to C. To gain insight into the mechanisms underlying erroneous nucleotide incorporation, we changed amino acids in human Poleta and Polkappa proteins that might modulate their specificity for incorporating 8-oxo-dGTP into DNA. We found that Arg61 in Poleta was crucial for erroneous nucleotide incorporation. When Arg61 was substituted with lysine (R61K), the ratio of pairing of dA to 8-oxo-dGTP compared to pairing of dC was reduced from 660:1 (wild-type Poleta) to 7 : 1 (R61K). Similarly, Tyr112 in Polkappa was crucial for erroneous nucleotide incorporation. When Tyr112 was substituted with alanine (Y112A), the ratio of pairing was reduced from 11: 1 (wild-type Polkappa) to almost 1: 1 (Y112A). Interestingly, substitution at the corresponding position in Poleta, i.e. Phe18 to alanine, did not alter the specificity. These results suggested that amino acids at distinct positions in the active sites of Poleta and Polkappa might enhance 8-oxo-dGTP to favor the syn conformation, and thus direct its misincorporation into DNA.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Nucleótidos de Desoxiguanina/química , Sustitución de Aminoácidos , Arginina/genética , Emparejamiento Base , Dominio Catalítico , ADN/biosíntesis , ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiadenosinas/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Oxidación-Reducción
11.
Commun Biol ; 5(1): 75, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058542

RESUMEN

Molecular evolutionary rates vary among lineages and influence the evolutionary process. Here, we report elevated genome-wide mutation rates in Podostemaceae, a family of aquatic plants with a unique body plan that allows members to live on submerged rocks in fast-flowing rivers. Molecular evolutionary analyses using 1640 orthologous gene groups revealed two historical increases in evolutionary rates: the first at the emergence of the family and the second at the emergence of Podostemoideae, which is the most diversified subfamily. In both branches, synonymous substitution rates were elevated, indicating higher mutation rates. On early branches, mutations were biased in favour of AT content, which is consistent with a role for ultraviolet light-induced mutation and habitat shift. In ancestors of Podostemoideae, DNA-repair genes were enriched in genes under positive selection, which may have responded to the meristem architectural changes.


Asunto(s)
Evolución Biológica , Magnoliopsida/genética , Mutación , Rasgos de la Historia de Vida
12.
Mutat Res ; 718(1-2): 10-7, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21078407

RESUMEN

Human cells possess multiple specialized DNA polymerases (Pols) that bypass a variety of DNA lesions which otherwise would block chromosome replication. Human polymerase kappa (Pol κ) bypasses benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) DNA adducts in an almost error-free manner. To better understand the relationship between the structural features in the active site and lesion bypass by Pol κ, we mutated codons corresponding to amino acids appearing close to the adducts in the active site, and compared bypass efficiencies. Remarkably, the substitution of alanine for phenylalanine 171 (F171), an amino acid conserved between Pol κ and its bacterial counterpart Escherichia coli DinB, enhanced the efficiencies of dCMP incorporation opposite (-)- and (+)-trans-anti-BPDE-N(2)-dG 18-fold. This substitution affected neither the fidelity of TLS nor the efficiency of dCMP incorporation opposite normal guanine. This amino acid change also enhanced the binding affinity of Pol κ to template/primer DNA containing (-)-trans-anti-BPDE-N(2)-dG. These results suggest that F171 functions as a molecular brake for TLS across BPDE-N(2)-dG by Pol κ and that the F171A derivative of Pol κ bypasses these DNA lesions more actively than does the wild-type enzyme.


Asunto(s)
Benzo(a)pireno/metabolismo , Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/análogos & derivados , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/química , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Benzo(a)pireno/química , Dominio Catalítico/genética , Aductos de ADN/química , Daño del ADN , Cartilla de ADN/genética , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenilalanina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
13.
Nat Commun ; 12(1): 2059, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824325

RESUMEN

Oxidized dGTP (8-oxo-7,8-dihydro-2´-deoxyguanosine triphosphate, 8-oxodGTP) insertion by DNA polymerases strongly promotes cancer and human disease. How DNA polymerases discriminate against oxidized and undamaged nucleotides, especially in error-prone double strand break (DSB) repair, is poorly understood. High-resolution time-lapse X-ray crystallography snapshots of DSB repair polymerase µ undergoing DNA synthesis reveal that a third active site metal promotes insertion of oxidized and undamaged dGTP in the canonical anti-conformation opposite template cytosine. The product metal bridged O8 with product oxygens, and was not observed in the syn-conformation opposite template adenine (At). Rotation of At into the syn-conformation enabled undamaged dGTP misinsertion. Exploiting metal and substrate dynamics in a rigid active site allows 8-oxodGTP to circumvent polymerase fidelity safeguards to promote pro-mutagenic double strand break repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis/genética , Nucleótidos/metabolismo , Adenina/metabolismo , Emparejamiento Base , Biocatálisis , Dominio Catalítico , Citosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Insercional/genética , Oxidación-Reducción
14.
DNA Repair (Amst) ; 100: 103052, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607474

RESUMEN

DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.


Asunto(s)
Benzo(a)pireno/metabolismo , Dominio Catalítico , Aductos de ADN/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Mutación , Línea Celular , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos
15.
Nat Commun ; 12(1): 5055, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417448

RESUMEN

Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) µ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol µ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol µ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol µ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Ribonucleótidos/metabolismo , Adenina/metabolismo , Calcio/metabolismo , Dominio Catalítico , Citosina/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción
16.
DNA Repair (Amst) ; 93: 102906, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33087272

RESUMEN

8-Oxo-7,8-dihydroguanine (8-oxoG) is the major base damage in the genomic DNA by exposure to reactive oxygen species. Organisms have evolved various DNA repair mechanisms, such as base excision repair (BER) and nucleotide excision repair (NER), to protect the cellular genome from these mutagenic DNA lesions. The efficiency and capacity of BER and NER mechanisms can be modulated by the local sequence and structural contexts in which 8-oxoG is located. This graphical review summarizes the biochemical and structural studies that have provided insights into the impact of the microenvironment around the site of the lesion on oxidative DNA damage repair.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Animales , ADN/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno
17.
PLoS One ; 15(12): e0244790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33382846

RESUMEN

Ribonucleoside triphosphates are often incorporated into genomic DNA during DNA replication. The accumulation of unrepaired ribonucleotides is associated with genomic instability, which is mediated by DNA topoisomerase 1 (Top1) processing of embedded ribonucleotides. The cleavage initiated by Top1 at the site of a ribonucleotide leads to the formation of a Top1-DNA cleavage complex (Top1cc), occasionally resulting in a DNA double-strand break (DSB). In humans, tyrosyl-DNA phosphodiesterases (TDPs) are essential repair enzymes that resolve the trapped Top1cc followed by downstream repair factors. However, there is limited cellular evidence of the involvement of TDPs in the processing of incorporated ribonucleotides in mammals. We assessed the role of TDPs in mutagenesis induced by a single ribonucleotide embedded into DNA. A supF shuttle vector site-specifically containing a single riboguanosine (rG) was introduced into the human lymphoblastoid TK6 cell line and its TDP1-, TDP2-, and TDP1/TDP2-deficient derivatives. TDP1 and TDP2 insufficiency remarkably decreased the mutant frequency caused by an embedded rG. The ratio of large deletion mutations induced by rG was also substantially lower in TDP1/TDP2-deficient cells than wild-type cells. Furthermore, the disruption of TDPs reduced the length of rG-mediated large deletion mutations. The recovery ratio of the propagated plasmid was also increased in TDP1/TDP2-deficient cells after the transfection of the shuttle vector containing rG. The results suggest that TDPs-mediated ribonucleotide processing cascade leads to unfavorable consequences, whereas in the absence of these repair factors, a more error-free processing pathway might function to suppress the ribonucleotide-induced mutagenesis. Furthermore, base substitution mutations at sites outside the position of rG were detected in the supF gene via a TDPs-independent mechanism. Overall, we provide new insights into the mechanism of mutagenesis induced by an embedded ribonucleotide in mammalian cells, which may lead to the fatal phenotype in the ribonucleotide excision repair deficiency.


Asunto(s)
Mutagénesis/fisiología , Mutágenos , Hidrolasas Diéster Fosfóricas/genética , Ribonucleótidos/genética , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Ribonucleótidos/metabolismo
18.
Biochemistry ; 48(20): 4239-46, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19341290

RESUMEN

Human DNA is continuously damaged by exogenous and endogenous genotoxic insults. To counteract DNA damage and ensure the completion of DNA replication, cells possess specialized DNA polymerases (Pols) that bypass a variety of DNA lesions. Human DNA polymerase kappa (hPolkappa) is a member of the Y-family of DNA Pols and a direct counterpart of DinB in Escherichia coli. hPolkappa is characterized by its ability to bypass several DNA adducts [e.g., benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) and thymine glycol] and efficiently extend primers with mismatches at the termini. hPolkappa is structurally distinct from E. coli DinB in that it possesses an approximately 100-amino acid extension at the N-terminus. Here, we report that tyrosine 112 (Y112), the steric gate amino acid of hPolkappa, which distinguishes dNTPs from rNTPs by sensing the 2'-hydroxy group of incoming nucleotides, plays a crucial role in extension reactions with mismatched primer termini. When Y112 was replaced with alanine, the amino acid change severely reduced the catalytic constant, i.e., k(cat), of the extending mismatched primers and lowered the efficiency, i.e., k(cat)/K(m), of this process by approximately 400-fold compared with that of the wild-type enzyme. In contrast, the amino acid replacement did not reduce the insertion efficiency of dCMP opposite BPDE-N(2)-dG in template DNA, nor did it affect the ability of hPolkappa to bind strongly to template-primer DNA with BPDE-N(2)-dG/dCMP. We conclude that the steric gate of hPolkappa is a major fidelity factor that regulates extension reactions from mismatched primer termini.


Asunto(s)
Cartilla de ADN/química , ADN Polimerasa Dirigida por ADN/química , Tirosina/química , Aminoácidos/química , Disparidad de Par Base , Catálisis , Aductos de ADN , Replicación del ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos , Humanos , Cinética , Modelos Moleculares , Mutación
19.
Genes Environ ; 41: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30700998

RESUMEN

Ribonucleotides, which are RNA precursors, are often incorporated into DNA during replication. Although embedded ribonucleotides in the genome are efficiently removed by canonical ribonucleotide excision repair (RER), inactivation of RER causes genomic ribonucleotide accumulation, leading to various abnormalities in cells. Mutation of genes encoding factors involved in RER is associated with the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome. Over the last decade, the biological impact of ribonucleotides in the genome has attracted much attention. In the present review, we particularly focus on recent studies that have elucidated possible mechanisms of ribonucleotide incorporation and repair and their significance in mammals.

20.
Genes Environ ; 41: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346351

RESUMEN

BACKGROUND: The human genome is constantly exposed to numerous environmental genotoxicants. To prevent the detrimental consequences induced by the expansion of damaged cells, cellular protective systems such as nucleotide excision repair (NER) exist and serve as a primary pathway for repairing the various helix-distorting DNA adducts induced by genotoxic agents. NER is further divided into two sub-pathways, namely, global genomic NER (GG-NER) and transcription-coupled NER (TC-NER). Both NER sub-pathways are reportedly involved in the damage response elicited by exposure to genotoxins. However, how disruption of these sub-pathways impacts the toxicity of different types of environmental mutagens in human cells is not well understood. RESULTS: To evaluate the role of NER sub-pathways on the cytotoxic effects of mutagens, we disrupted XPC and CSB to selectively inactivate GG-NER and TC-NER, respectively, in human lymphoblastoid TK6 cells, a standard cell line used in genotoxicity studies. Using these cells, we then comparatively assessed their respective sensitivities to representative genotoxic agents, including ultraviolet C (UVC) light, benzo [a] pyrene (B(a)P), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), γ-ray, and 2-acetylaminofluorene (2-AAF). CSB -/- cells exhibited a hyper-sensitivity to UVC, B(a)P, and MeIQx. On the other hand, XPC -/- cells were highly sensitive to UVC, but not to B(a)P and MeIQx, compared with wild-type cells. In contrast with other genotoxins, the sensitivity of XPC -/- cells against PhIP was significantly higher than CSB -/- cells. The toxicity of γ-ray and 2-AAF was not enhanced by disruption of either XPC or CSB in the cells. CONCLUSIONS: Based on our findings, genetically modified TK6 cells appear to be a useful tool for elucidating the detailed roles of the various repair factors that exist to combat genotoxic agents, and should contribute to the improved risk assessment of environmental chemical contaminants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA