Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(26): 15343-15353, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546525

RESUMEN

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3-/H+ exchanger regulating stomata aperture in Athaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3- sensor. We were then able to quantify the variations of NO3- and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3- In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3- and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Citosol/química , Homeostasis/fisiología , Nitratos/química , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Concentración de Iones de Hidrógeno , Nitratos/metabolismo
2.
J Exp Bot ; 69(6): 1287-1299, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29140451

RESUMEN

Autophagy is a critical pathway for plant adaptation to stress. Macroautophagy relies on the biogenesis of a specialized membrane named the phagophore that maturates into a double membrane vesicle. Proteins and lipids act synergistically to promote membrane structure and functions, yet research on autophagy has mostly focused on autophagy-related proteins while knowledge of supporting lipids in the formation of autophagic membranes remains scarce. This review expands on studies in plants with examples from other organisms to present and discuss our current understanding of lipids in membrane dynamics associated with the autophagy pathway in plants.


Asunto(s)
Autofagia/fisiología , Membrana Celular/fisiología , Lípidos de la Membrana/metabolismo , Fenómenos Fisiológicos de las Plantas
3.
J Exp Bot ; 69(6): 1335-1353, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29474677

RESUMEN

Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway. In the framework of the COST (European Cooperation in Science and Technology) action TRANSAUTOPHAGY (2016-2020), we decided to review our current knowledge of autophagy responses in higher plants, with emphasis on knowledge gaps. We also assess here the potential of translating the acquired knowledge to improve crop plant growth and development in a context of growing social and environmental challenges for agriculture in the near future.


Asunto(s)
Autofagia , Protección de Cultivos/métodos , Productos Agrícolas/metabolismo , Producción de Cultivos , Productos Agrícolas/inmunología , Nutrientes/metabolismo
4.
J Struct Biol ; 198(3): 196-202, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28347808

RESUMEN

Recently, a number of diverse correlative light and electron microscopy (CLEM) protocols have been developed for several model organisms. However, these CLEM methods have largely bypassed plant cell research, with most protocols having little application to plants. Using autophagosome identification as a biological background, we propose and compare two CLEM protocols that can be performed in most plant research laboratories, providing a good compromise that preserves fluorescent signals as well as ultrastructural features. These protocols are based on either the adaptation of a high pressure fixation/GMA acrylic resin embedding method, or on the Tokuyasu approach. Both protocols suitably preserved GFP fluorescence while allowing the observation of cell ultrastructure in plants. Finally, the advantages and disadvantages of these protocols are discussed in the context of multiscale imaging of plant cells.


Asunto(s)
Arabidopsis/citología , Microscopía Electrónica/métodos , Autofagosomas , Crioultramicrotomía/métodos , Proteínas Fluorescentes Verdes , Técnicas Histológicas/métodos , Técnicas Histológicas/normas , Microscopía Electrónica/normas , Microscopía Fluorescente/métodos , Raíces de Plantas/citología , Adhesión del Tejido/métodos
5.
Plant Cell ; 25(3): 1056-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23543785

RESUMEN

N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.


Asunto(s)
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Lípidos de la Membrana/metabolismo , Tiorredoxina h/metabolismo , Acilación , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Sitios de Unión , Membrana Celular/genética , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Filogenia , Transporte de Proteínas , Tiorredoxina h/genética
6.
Plant Cell ; 25(10): 4195-208, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24151294

RESUMEN

Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Proteínas de la Membrana/fisiología , Mitocondrias/ultraestructura , Transferasas (Grupos de Otros Fosfatos Sustitutos)/fisiología , Antioxidantes/metabolismo , Apoptosis , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cardiolipinas/química , ADN Bacteriano , Luz , Proteínas de la Membrana/genética , Membranas Mitocondriales/química , Mutagénesis Insercional , Protoplastos/enzimología , Plantones/crecimiento & desarrollo , Estrés Fisiológico , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
7.
Biochim Biophys Acta ; 1842(10): 1422-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25004376

RESUMEN

Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains. We reveal here that inhibition of the synthesis of sphingolipids with very long acyl chains induces defective cell plates with persistent vesicular structures and large gaps. Golgi-derived vesicles carrying material toward the cell plate display longer vesicle-vesicle contact time and their cargos accumulate at the cell plate, suggesting membrane fusion and/or recycling defects. In vitro fusion experiments between artificial vesicles show that glycosphingolipids with very long acyl chains stimulate lipid bilayer fusion. Therefore we propose that the very long acyl chains of sphingolipids are essential structural determinants for vesicle dynamics and membrane fusion during cytokinesis.

8.
New Phytol ; 205(2): 938-50, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25266734

RESUMEN

Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.


Asunto(s)
Ciclo Celular , Química Clic/métodos , Aparato de Golgi/metabolismo , Nicotiana/citología , Proteínas de Plantas/metabolismo , Arabidopsis , Proliferación Celular , Cobre/química , Desoxiuridina/análogos & derivados , Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Proteínas de Plantas/análisis , Plantas Modificadas Genéticamente , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
9.
J Microsc ; 280(2): 71-74, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33460136
10.
Plant J ; 76(1): 87-100, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23808398

RESUMEN

Several vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well-known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant-specific insert (PSI) and the C-terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Ácido Aspártico Endopeptidasas/genética , Expresión Génica , Genes Reporteros , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas , Alineación de Secuencia , Nicotiana/genética
11.
Plant Cell ; 23(6): 2362-78, 2011 06.
Artículo en Inglés | MEDLINE | ID: mdl-21666002

RESUMEN

Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A2(a)- and Rab-A1(e)-labeled early endosomes along the secretory pathway. These aggregates correlate with the accumulation of membrane structures and vesicle fragmentation in the cytosol. In conclusion, sphingolipids with very long acyl chains define a trafficking pathway with specific endomembrane compartments and polar auxin transport protein cargoes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Vías Secretoras/fisiología , Esfingolípidos , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brefeldino A/metabolismo , Polaridad Celular , Ceramidas/química , Ceramidas/metabolismo , Endosomas/metabolismo , Inhibidores Enzimáticos/metabolismo , Fumonisinas/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Esfingolípidos/química , Esfingolípidos/metabolismo
12.
J Cell Sci ; 124(Pt 19): 3223-34, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21896643

RESUMEN

Acyl chain length is thought to be crucial for biophysical properties of the membrane, in particular during cell division, when active vesicular fusion is necessary. In higher plants, the process of cytokinesis is unique, because the separation of the two daughter cells is carried out by de novo vesicular fusion to generate a laterally expanding cell plate. In Arabidopsis thaliana, very-long-chain fatty acid (VLCFA) depletion caused by a mutation in the microsomal elongase gene PASTICCINO2 (PAS2) or by application of the selective elongase inhibitor flufenacet altered cytokinesis. Cell plate expansion was delayed and the formation of the endomembrane tubular network altered. These defects were associated with specific aggregation of the cell plate markers YFP-Rab-A2a and KNOLLE during cytokinesis. Changes in levels of VLCFA also resulted in modification of endocytosis and sensitivity to brefeldin A. Finally, the cytokinesis impairment in pas2 cells was associated with reduced levels of very long fatty acyl chains in phospholipids. Together, our findings demonstrate that VLCFA-containing lipids are essential for endomembrane dynamics during cytokinesis.


Asunto(s)
Arabidopsis/citología , Citocinesis , Ácidos Grasos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , División del Núcleo Celular , Vesículas Citoplasmáticas/metabolismo , Endocitosis , Microscopía Fluorescente , Mutación , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/metabolismo
14.
Plant J ; 65(6): 958-71, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205030

RESUMEN

Sphingolipids play an essential role in the functioning of the secretory pathway in eukaryotic organisms. Their importance in the functional organization of plant cells has not been studied in any detail before. The sphingolipid synthesis inhibitor fumonisin B1 (FB1), a mycotoxin acting as a specific inhibitor of ceramide synthase, was tested for its effects on cell growth, cell polarity, cell shape, cell cycle and on the ultrastructure of BY2 cells. We used cell lines expressing different GFP-tagged markers for plant cell compartments, as well as a Golgi marker fused to the photoconvertible protein Kaede. Light and electron microscopy, combined with flow cytometry, were applied to analyse the morphodynamics and architecture of compartments of the secretory pathway. The results indicate that FB1 treatment had severe effects on cell growth and cell shape, and induced a delay in cell division processes. The cell changes were accompanied by the formation of the endoplasmic reticulum (ER)-derived tubular aggregates (FB1-induced compartments), together with an inhibition of cargo transport from the ER to the Golgi apparatus. A change in polar localization of the auxin transporter PIN1 was also observed, but endocytic processes were little affected. Electron microscopy studies confirmed that molecular FB1 targets were distinct from brefeldin A (BFA) targets. We propose that the reported effects of inhibition of ceramide biosynthesis reflect the importance of sphingolipids during cell growth and establishment of cell polarity in higher plant cells, notably through their contribution to the functional organization of the ER or its differentiation into distinct compartments.


Asunto(s)
Nicotiana/citología , Nicotiana/metabolismo , Esfingolípidos/metabolismo , Transporte Biológico Activo/efectos de los fármacos , Brefeldino A/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Inhibidores Enzimáticos/farmacología , Fumonisinas/farmacología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Oxidorreductasas/antagonistas & inhibidores , Plantas Modificadas Genéticamente , Nicotiana/genética
15.
J Microsc ; 247(1): 94-105, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22681535

RESUMEN

Optimizing sample processing, reducing the duration of the preparation of specimen, and adjusting procedures to adhere to new health and safety regulations, are the current challenges of plant electron microscopists. To address these issues, plant processing protocols for TEM, combining the use of polyphenolic compounds as substitute for uranyl acetate with microwave technology are being developed. In the present work, we optimized microwave-assisted processing of different types of plant tissue for ultrastuctural and immunocytochemical studies. We also explored Oolong tea extract as alternative for uranyl acetate for the staining of plant samples. We obtained excellent preservation of cell ultrastructure when samples were embedded in epoxy resin, and of cell antigenicity, when embedded in LR-White resin. Furthermore, Oolong tea extract successfully replaced uranyl acetate as a counterstain on ultrathin sections, and for in block staining. These novel protocols reduce the time spent at the bench, and improve safety conditions for the investigator. The preservation of the cell components when following these approaches is of high quality. Altogether, they offer significant simplification of the procedures required for electron microscopy of plant ultrastructure.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Microondas , Manejo de Especímenes/métodos , Té/efectos de la radiación , Té/ultraestructura , Inmunohistoquímica/métodos , Compuestos Organometálicos/metabolismo , Polifenoles/metabolismo , Coloración y Etiquetado/métodos
16.
Plant J ; 63(4): 696-711, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545892

RESUMEN

Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light-induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse-chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi, which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl-transferase (ST-Kaede) and of the vacuolar pathway marker cardosin A (cardA-Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede-based imaging protocols. Photoconverted ST-Kaede red-labelled organelles can be followed within neighbouring populations of non-converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio-imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas Luminiscentes/metabolismo , Simulación de Dinámica Molecular , Proteínas Recombinantes de Fusión/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Brefeldino A/farmacología , Células Cultivadas , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Rayos Láser , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Proteínas Recombinantes de Fusión/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Nicotiana/citología
17.
Plant J ; 62(1): 24-38, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20042020

RESUMEN

Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen-fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so-called nodulin genes are induced, including large families that encode small peptides. Using a three-hybrid approach in yeast cells, we identified two new small nodulins, MtSNARP1 and MtSNARP2 (for small nodulin acidic RNA-binding protein), which interact with the RNA of MtENOD40, an early induced nodulin gene showing conserved RNA secondary structures. The SNARPs are acidic peptides showing single-stranded RNA-binding activity in vitro and are encoded by a small gene family in Medicago truncatula. These peptides exhibit two new conserved motifs and a putative signal peptide that redirects a GFP fusion to the endoplasmic reticulum both in protoplasts and during symbiosis, suggesting they are secreted. MtSNARP2 is expressed in the differentiating region of the nodule together with several early nodulin genes. MtSNARP2 RNA interference (RNAi) transgenic roots showed aberrant early senescent nodules where differentiated bacteroids degenerate rapidly. Hence, a functional symbiotic interaction may be regulated by secreted RNA-binding peptides.


Asunto(s)
Medicago truncatula/genética , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Señales de Clasificación de Proteína , Interferencia de ARN , ARN de Planta/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia
18.
Plant Cell Physiol ; 52(7): 1142-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21613277

RESUMEN

Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.


Asunto(s)
Acuaporinas/metabolismo , Arabidopsis/citología , Germinación , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Vacuolas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Desecación , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Semillas/citología , ATPasas de Translocación de Protón Vacuolares/metabolismo
19.
J Exp Bot ; 59(11): 3087-98, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18583349

RESUMEN

The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Inmunohistoquímica , Microscopía Confocal , Complejos Multiproteicos/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología
20.
Cells ; 7(1)2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29315263

RESUMEN

Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway. In this review, we describe useful protocols for studying autophagy in the plant cell, taking into account some specificities of the plant model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA