Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 141(7): 1503-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598159

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes/fisiología , Lytechinus/embriología , Animales , Tipificación del Cuerpo/genética , Adhesión Celular/genética , Movimiento Celular/genética , Polaridad Celular/genética , Embrión no Mamífero , Lytechinus/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/fisiología , Proteína 1 Relacionada con Twist/fisiología
2.
Integr Comp Biol ; 54(4): 723-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25009306

RESUMEN

The sea urchin larva is shaped by a calcite endoskeleton. That skeleton is built by 64 primary mesenchyme cells (PMCs) in Lytechinus variegatus. The PMCs originate as micromeres due to an unequal fourth cleavage in the embryo. Micromeres are specified in a well-described molecular sequence and enter the blastocoel at a precise time using a classic epithelial-mesenchymal transition. To make the skeleton, the PMCs receive signaling inputs from the overlying ectoderm, which provides positional information as well as control of the growth of initial skeletal tri-radiates. The patterning of the skeleton is the result both of autonomous inputs from PMCs, including production of proteins that are included in the skeletal matrix, and of non-autonomous dynamic information from the ectoderm. Here, we summarize the wealth of information known about how a PMC contributes to the skeletal structure. The larval skeleton is a model for understanding how information encoded in DNA is translated into a three-dimensional crystalline structure.


Asunto(s)
Citoesqueleto/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Minerales/metabolismo , Erizos de Mar/citología , Animales , Carbonato de Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA