Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 85(1): 265-72, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23194162

RESUMEN

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) typically utilizes an m/z-independent excitation magnitude to excite all ions to the same cyclotron radius, so that the detected signal magnitude is directly proportional to the relative ion abundance. However, deleterious space charge interaction between ion clouds is maximized for clouds of equal radius. To minimize ion cloud interactions, we induce an m/z-dependent ion radius distribution (30%-45% of the maximum cell radius) that results in a 3-fold increase in mass spectral dynamic range for complex mixtures, consistent with increased ion cloud lifetime for less-abundant ion clouds. Further, broadband frequency-sweep (chirp) excitation that contains the second and/or third harmonic frequency of an excited ion cloud swept from low-to-high frequency produces systematic variations in accurate mass measurement not observed when the sweep direction is reversed. The ion cyclotron radius distribution induces an m/z-dependent frequency shift that can be corrected to provide a root-mean-square (rms) mass measurement error of <100 ppb on petroleum-based mixtures that contain tens of thousands of identified peaks.


Asunto(s)
Iones/química , Espectrometría de Masas , Análisis de Fourier , Petróleo/análisis
2.
Environ Sci Technol ; 47(13): 7530-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23692145

RESUMEN

Traditional tools for routine environmental analysis and forensic chemistry of petroleum have relied almost exclusively on gas chromatography-mass spectrometry (GC-MS), although many compounds in crude oil (and its transformation products) are not chromatographically separated or amenable to GC-MS due to volatility. To enhance current and future studies on the fate, transport, and fingerprinting of the Macondo well oil released from the 2010 Deepwater Horizon disaster, we created an extensive molecular library of the unadulterated petroleum to compare to a tar ball collected on the beach of Louisiana. We apply ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to identify compositional changes at the molecular level between native and weathered crude oil samples and reveal enrichment in polar compounds inaccessible by GC-based characterization. The outlined approach provides unprecedented detail with the potential to enhance insight into the environmental fate of spilled oil, improved toxicology, molecular modeling of biotic/abiotic weathering, and comprehensive molecular characterization for petroleum-derived releases. Here, we characterize more than 30,000 acidic, basic, and nonpolar unique neutral elemental compositions for the Macondo well crude oil, to provide an archive for future chemical analyses of the environmental consequences of the oil spill.


Asunto(s)
Espectrometría de Masas/métodos , Contaminación por Petróleo/análisis , Petróleo/análisis , Cromatografía de Gases
3.
Concepts Magn Reson Part B Magn Reson Eng ; 43(3): 100-109, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25076864

RESUMEN

The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

4.
Anal Chem ; 83(17): 6907-10, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21838231

RESUMEN

Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance.

5.
Anal Chem ; 83(5): 1732-6, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21275417

RESUMEN

Ion cyclotron resonance frequency, f, is conventionally converted to ion mass-to-charge ratio, m/z (mass "calibration") by fitting experimental data spanning the entire detected m/z range to the relation, m/z = A/f + B/f(2), to yield rms mass error as low as ~200 ppb for ~10,000 resolved components of a petroleum crude oil. Analysis of residual error versus m/z and peak abundance reveals that systematic errors limit mass accuracy and thus the confidence in elemental composition assignments. Here, we present a calibration procedure in which the spectrum is divided into dozens of adjoining segments, and a separate calibration is applied to each, thereby eliminating systematic error with respect to m/z. Further, incorporation of a third term in the calibration equation that is proportional to the magnitude of each detected peak minimizes systematic error with respect to ion abundance. Finally, absorption-mode data analysis increases mass measurement accuracy only after minimization of systematic errors. We are able to increase the number of assigned peaks by as much as 25%, while reducing the rms mass error by as much as 3-fold, for significantly improved confidence in elemental composition assignment.

6.
J Am Soc Mass Spectrom ; 25(6): 943-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24692045

RESUMEN

An auxiliary rf waveform of the same amplitude and phase applied to all the rods of an ion accumulation multipole creates an m/z-dependent axial pseudo potential. Controlled decrease of the auxiliary rf amplitude releases ions from the accumulation multipole sequentially from high to low m/z. The slope of the auxiliary rf voltage ramp is adjusted so that ions of different m/z reach the center of the ICR cell at the same time point, which mitigates the typical time dispersion observed in external source FT-ICR and extends the observable mass range for a single data acquisition by 2- to 3-fold. For complex mixture analysis, twice the number of elemental compositions are assigned when the auxiliary rf ejection is applied compared with the standard gated trapping.

7.
J Am Soc Mass Spectrom ; 24(2): 213-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23296907

RESUMEN

We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA