RESUMEN
BACKGROUND: Coronavirus-like particles (CoVLP) that are produced in plants and display the prefusion spike glycoprotein of the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are combined with an adjuvant (Adjuvant System 03 [AS03]) to form the candidate vaccine. METHODS: In this phase 3, multinational, randomized, placebo-controlled trial conducted at 85 centers, we assigned adults (≥18 years of age) in a 1:1 ratio to receive two intramuscular injections of the CoVLP+AS03 vaccine or placebo 21 days apart. The primary objective of the trial was to determine the efficacy of the CoVLP+AS03 vaccine in preventing symptomatic coronavirus disease 2019 (Covid-19) beginning at least 7 days after the second injection, with the analysis performed after the detection of at least 160 cases. RESULTS: A total of 24,141 volunteers participated in the trial; the median age of the participants was 29 years. Covid-19 was confirmed by polymerase-chain-reaction assay in 165 participants in the intention-to-treat population; all viral samples that could be sequenced contained variants of the original strain. Vaccine efficacy was 69.5% (95% confidence interval [CI], 56.7 to 78.8) against any symptomatic Covid-19 caused by five variants that were identified by sequencing. In a post hoc analysis, vaccine efficacy was 78.8% (95% CI, 55.8 to 90.8) against moderate-to-severe disease and 74.0% (95% CI, 62.1 to 82.5) among the participants who were seronegative at baseline. No severe cases of Covid-19 occurred in the vaccine group, in which the median viral load for breakthrough cases was lower than that in the placebo group by a factor of more than 100. Solicited adverse events were mostly mild or moderate and transient and were more frequent in the vaccine group than in the placebo group; local adverse events occurred in 92.3% and 45.5% of participants, respectively, and systemic adverse events in 87.3% and 65.0%. The incidence of unsolicited adverse events was similar in the two groups up to 21 days after each dose (22.7% and 20.4%) and from day 43 through day 201 (4.2% and 4.0%). CONCLUSIONS: The CoVLP+AS03 vaccine was effective in preventing Covid-19 caused by a spectrum of variants, with efficacy ranging from 69.5% against symptomatic infection to 78.8% against moderate-to-severe disease. (Funded by Medicago; ClinicalTrials.gov number, NCT04636697.).
Asunto(s)
Adyuvantes de Vacunas , Vacunas contra la COVID-19 , COVID-19 , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/uso terapéutico , Adyuvantes de Vacunas/administración & dosificación , Adyuvantes de Vacunas/efectos adversos , Adyuvantes de Vacunas/uso terapéutico , Adulto , Anticuerpos Antivirales , COVID-19/genética , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/uso terapéutico , Método Doble Ciego , Humanos , Inyecciones Intramusculares , SARS-CoV-2/genética , VacunaciónRESUMEN
In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of â60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.
Asunto(s)
Dimetilpolisiloxanos , Grafito , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Dimetilpolisiloxanos/química , MovimientoRESUMEN
To elucidate the linkage between replication and encapsidation in Picornavirales, we have taken advantage of the bipartite nature of a plant-infecting member of this order, cowpea mosaic virus (CPMV), to decouple the two processes. RNA-free virus-like particles (empty virus-like particles [eVLPs]) can be generated by transiently coexpressing the RNA-2-encoded coat protein precursor (VP60) with the RNA-1-encoded 24,000-molecular-weight (24K) protease, in the absence of the replication machinery (K. Saunders, F. Sainsbury, and G. P. Lomonossoff, Virology 393:329-337, 2009, https://doi.org/10.1016/j.virol.2009.08.023). We have made use of the ability to produce assembled capsids of CPMV in the absence of replication to examine the putative linkage between RNA replication and packaging in the Picornavirales We have created a series of mutant RNA-1 and RNA-2 molecules and have assessed the effects of the mutations on both the replication and packaging of the viral RNAs. We demonstrate that mutations that affect replication have a concomitant impact on encapsidation and that RNA-1-mediated replication is required for encapsidation of both RNA-1 and RNA-2. This close coupling between replication and encapsidation provides a means for the specific packaging of viral RNAs. Moreover, we demonstrate that this feature of CPMV can be used to specifically encapsidate custom RNA by placing a sequence of choice between the RNA-2 sequences required for replication.IMPORTANCE The mechanism whereby members of the order Picornavirales specifically package their genomic RNAs is poorly understood. Research with monopartite members of the order, such as poliovirus, indicated that packaging is linked to replication, although the presence of "packaging signals" along the length of the viral RNA has also been suggested. Thanks to the bipartite nature of the CPMV genome, which allows the manipulation of RNA-1 without modifying RNA-2, we show here that this specificity is due to a functional link between the two processes of viral replication and encapsidation. This has important implications for our understanding of the fundamental molecular biology of Picornavirales and opens the door to novel research and therapeutic applications in the field of custom RNA packaging and delivery technologies.
Asunto(s)
Cápside/metabolismo , Comovirus/fisiología , ARN Viral/genética , Proteínas de la Cápside/genética , Mutación , Nicotiana/virología , Ensamble de Virus , Replicación ViralRESUMEN
Immature human immunodeficiency virus type 1 (HIV-1) is approximately spherical, but is constructed from a hexagonal lattice of the Gag protein. As a hexagonal lattice is necessarily flat, the local symmetry cannot be maintained throughout the structure. This geometrical frustration presumably results in bending stress. In natural particles, the stress is relieved by incorporation of packing defects, but the magnitude of this stress and its significance for the particles is not known. In order to control this stress, we have now assembled the Gag protein on a quasi-spherical template derived from bacteriophage P22. This template is monodisperse in size and electron-transparent, enabling the use of cryo-electron microscopy in structural studies. These templated assemblies are far less polydisperse than any previously described virus-like particles (and, while constructed according to the same lattice as natural particles, contain almost no packing defects). This system gives us the ability to study the relationship between packing defects, curvature and elastic energy, and thermodynamic stability. As Gag is bound to the P22 template by single-stranded DNA, treatment of the particles with DNase enabled us to determine the intrinsic radius of curvature of a Gag lattice, unconstrained by DNA or a template. We found that this intrinsic radius is far larger than that of a virion or P22-templated particle. We conclude that Gag is under elastic strain in a particle; this has important implications for the kinetics of shell growth, the stability of the shell, and the type of defects it will assume as it grows.
RESUMEN
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA-2, termed CPMV-HT, in which the sequence to be expressed is positioned between a modified 5' UTR and the 3' UTR has been successfully used for the plant-based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5' UTR can dramatically influence expression levels, the role of the 3' UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3'UTR of CPMV RNA-2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress-HT-GFP. The results showed that the presence of a 3' UTR in the CPMV-HT system is important for achieving maximal expression levels. Removal of the entire 3' UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y-shaped secondary structure formed by nucleotides 125-165 of the 3' UTR plays a key role in its function; mutations that disrupt this Y-shaped structure have an effect equivalent to the deletion of the entire 3' UTR. Our results suggest that the Y-shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5' and 3' UTRs in CPMV-HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.
Asunto(s)
Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Biotecnología/métodos , Expresión Génica , Secuencia de Bases , Comovirus/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis/genética , Conformación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , Eliminación de SecuenciaRESUMEN
A study was conducted to examine the level of nonstructural carbohydrate, protein concentration and the activity of antioxidative enzymes viz. catalase and peroxidase in buds of different stages (Stages: I-before flower bud differentiation, II-flower bud differentiation, III-bud burst, IV-panicle elongation) and their adjacent leaves of biennial (Chausa, Dashehari, Langra) and the regular (Amrapali) cultivars. In the present study, Amrapali being the regular cultivar, contained higher levels of total and reducing sugar (4.49 to 12.67 mg g(-1) f.wt.) and protein content (1.90 to 6.78 mg g(-1)) in all the developmental stages of flowering as compared to biennial cultivars. However, in leaves gradual reduction in sugar and protein content was noticed in the advance stages of flowering. Paclobutrazol (2-8 g.a.i.), a flower inducing chemical, enhanced the catalase and peroxidase activities over the untreated control and maximum enhancement was recorded at 8 g.a.i. On the other hand, decreasing trend of protein with paclobutrazol treatment was recorded in adjacent leaves of flower buds. The results implicated the possible role of catalase and peroxidase and other associated biochemical changes in paclobutrazol induced flowering in mango.
Asunto(s)
Antioxidantes/metabolismo , Catalasa/metabolismo , Flores/efectos de los fármacos , Mangifera/efectos de los fármacos , Peroxidasas/metabolismo , Triazoles/farmacología , Flores/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mangifera/enzimologíaRESUMEN
Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated ß1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific ß1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with ß1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.
Asunto(s)
Glicoproteínas , UDP Xilosa Proteína Xilosiltransferasa , Humanos , Glicosilación , Proteínas Recombinantes/metabolismo , Glicoproteínas/genética , Polisacáridos/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismoRESUMEN
N-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan Leishmania donovani (LdOST) for its ability to improve IgG1 Fc glycosylation. LdOST fused to a fluorescent protein was transiently expressed in Nicotiana benthamiana and confocal microscopy confirmed the subcellular location at the endoplasmic reticulum. Transient co-expression of LdOST with two different IgG1 antibodies resulted in a significant increase (up to 97%) of Fc glycosylation while leaving the overall N-glycan composition unmodified, as determined by different mass spectrometry approaches. While biochemical and functional features of "glycosylation improved" antibodies remained unchanged, a slight increase in FcγRIIIa binding and thermal stability was observed. Collectively, our results reveal that LdOST expression is suitable to reduce the heterogeneity of plant-produced antibodies and can contribute to improving their stability and effector functions.
RESUMEN
The development of multifunctional nanoparticles for medical applications is of growing technological interest. A single formulation containing imaging and/or drug moieties that is also capable of preferential uptake in specific cells would greatly enhance diagnostics and treatments. There is growing interest in plant-derived viral nanoparticles (VNPs) and establishing new platform technologies based on these nanoparticles inspired by nature. Cowpea mosaic virus (CPMV) serves as the standard model for VNPs. Although exterior surface modification is well-known and has been comprehensively studied, little is known of interior modification. Additional functionality conferred by the capability for interior engineering would be of great benefit toward the ultimate goal of targeted drug delivery. Here, we examined the capacity of empty CPMV (eCPMV) particles devoid of RNA to encapsulate a wide variety of molecules. We systematically investigated the conjugation of fluorophores, biotin affinity tags, large molecular weight polymers such as poly(ethylene glycol) (PEG), and various peptides through targeting reactive cysteines displayed selectively on the interior surface. Several methods are described that mutually confirm specific functionalization of the interior. Finally, CPMV and eCPMV were labeled with near-infrared fluorophores and studied side-by-side in vitro and in vivo. Passive tumor targeting via the enhanced permeability and retention effect and optical imaging were confirmed using a preclinical mouse model of colon cancer. The results of our studies lay the foundation for the development of the eCPMV platform in a range of biomedical applications.
Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Comovirus/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Animales , Materiales Biocompatibles , Western Blotting , Cromatografía en Gel , Modelos Animales de Enfermedad , Electroforesis en Gel de Agar , Células HT29 , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Maleimidas/metabolismo , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Tamaño de la PartículaRESUMEN
The binding of influenza hemagglutinin (HA) to sialic acid (SA) receptors plays a well-defined role in shaping infection but the impact of such binding on vaccine responses has not yet been explored. We generated a virus-like particle (VLP) vaccine bearing the HA of H1N1 A/California/07/09 that is unable to bind to its α(2,6)-linked SA receptor (H1Y98F-VLP) and compared its immunogenicity and efficacy to a wild-type H1-VLP (H1WT-VLP) in mice. The H1Y98F-VLP elicited significantly stronger and more durable antibody responses (hemagglutination inhibition and microneutralization titers) and greater avidity maturation, likely attributable to improved germinal center formation. H1Y98F-VLP also resulted in a robust population of IL-2+TNFα+IFNγ- CD4+ T cells that correlated with antibody responses. Compared to H1WT-VLP vaccination, mice immunized with H1Y98F-VLP had 2.3-log lower lung viral loads and significantly lower pulmonary inflammatory cytokine levels 5 days post-challenge. These findings suggest that abrogation of HA-SA interactions may be a promising strategy to improve the quality and durability of influenza vaccine-induced humoral responses.
RESUMEN
The rapid spread of SARS-CoV-2 continues to impact humanity on a global scale with rising total morbidity and mortality. Despite the development of several effective vaccines, new products are needed to supply ongoing demand and to fight variants. We report herein a pre-specified interim analysis of the phase 2 portion of a Phase 2/3, randomized, placebo-controlled trial of a coronavirus virus-like particle (CoVLP) vaccine candidate, produced in plants that displays the SARS-CoV-2 spike glycoprotein, adjuvanted with AS03 (NCT04636697). A total of 753 participants were recruited between 25th November 2020 and 24th March 2021 into three groups: Healthy Adults (18-64 years: N = 306), Older Adults (≥65 years: N = 282) and Adults with Comorbidities (≥18 years: N = 165) and randomized 5:1 to receive two intramuscular doses of either vaccine (3.75 µg CoVLP/dose+AS03) or placebo, 21 days apart. This report presents safety, tolerability and immunogenicity data up to 6 months post-vaccination. The immune outcomes presented include neutralizing antibody (NAb) titres as measured by pseudovirion assay at days 21 and 42 as well as neutralizing antibody cross-reactivity to several variants of concern (VOCs): Alpha, Beta, Gamma, Delta, and Omicron (BA.1), up to 201 days post-immunization. Cellular (IFN-γ and IL-4 ELISpot) response data in day 21 and 42 peripheral blood are also presented. In this study, CoVLP+AS03 was well-tolerated and adverse events (AE) after each dose were generally mild to moderate and transient. Solicited AEs in Older Adults and Adults with Comorbidities were generally less frequent than in Healthy Adults and the reactogenicity was higher after the second dose. CoVLP+AS03 induced seroconversion in >35% of participants in each group after the first dose and in ~98% of participants, 21 days after the second dose. In all cohorts, 21-days after the second dose, NAb levels in sera against the vaccine strain were ~10-times those in a panel of convalescent sera. Cross-reactivity to Alpha, Beta and Delta variants was generally retained to day 201 (>80%) while cross-reactivity to the Gamma variant was reduced but still substantial at day 201 (73%). Cross-reactivity to the Omicron variant fell from 72% at day 42 to 20% at day 201. Almost all participants in all groups (>88%) had detectable cellular responses (IFN-γ, IL-4 or both) at 21 days after the second dose. A Th1-biased response was most evident after the first dose and was still present after the second dose. These data demonstrated that CoVLP+AS03 is well-tolerated and highly immunogenic, generating a durable (at least 6 months) immune response against different VOCs, in adults ≥18 years of age, with and without comorbidities.
RESUMEN
Endeavours to obtain elevated and prolonged levels of foreign gene expression in plants are often hampered by the onset of RNA silencing that negatively affects target gene expression. Plant virus-encoded suppressors of RNA silencing are useful tools for counteracting silencing but their wide applicability in transgenic plants is limited because their expression often causes harmful developmental effects. We hypothesized that a previously characterized tombusvirus P19 mutant (P19/R43W), typified by reduced symptomatic effects while maintaining the ability to sequester short-interfering RNAs, could be used to suppress virus-induced RNA silencing without the concomitant developmental effects. To investigate this, transient expression in Nicotiana benthamiana was used to evaluate the ability of P19/R43W to enhance heterologous gene expression. Although less potent than wt-P19, P19/R43W was an effective suppressor when used to enhance protein expression from either a traditional T-DNA expression cassette or using the CPMV-HT expression system. Stable transformation of N. benthamiana yielded plants that expressed detectable levels of P19/R43W that was functional as a suppressor. Transgenic co-expression of green fluorescent protein (GFP) and P19/R43W also showed elevated accumulation of GFP compared with the levels found in the absence of a suppressor. In all cases, transgenic expression of P19/R43W caused no or minimal morphological defects and plants produced normal-looking flowers and fertile seed. We conclude that the expression of P19/R43W is developmentally harmless to plants while providing a suitable platform for transient or transgenic overexpression of value-added genes in plants with reduced hindrance by RNA silencing.
Asunto(s)
Nicotiana/crecimiento & desarrollo , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Tombusvirus/genética , ADN Bacteriano , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genes Supresores , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Fenotipo , Semillas/fisiología , TransgenesRESUMEN
Particles of cowpea mosaic virus (CPMV) have enjoyed considerable success as a means of presenting peptides for vaccine purposes. However, the existing technology has limitations in regard to the size and nature of the peptides which can be presented and has problems regarding bio-containment. Recent developments suggest ways by which these problems can be overcome, increasing the range of potential applications of CPMV-based particle technology.
Asunto(s)
Comovirus/genética , Vectores Genéticos , Vacunas/biosíntesis , Quimera/genética , ADN de Plantas/biosíntesis , ADN Viral/administración & dosificación , ARN Viral/metabolismo , Proteínas Estructurales Virales/administración & dosificación , Proteínas Estructurales Virales/químicaRESUMEN
Among the most toxic and suffocating gases in industries and mines are carbon monoxide (CO) and nitrogen oxides (NOx). The electrostatically functionalized self-assembled MWCNT (f-MWCNTs) were employed to develop a sensing device to selectively sense gases such as CO and NOx with high sensitivity and repeatability to as low as sub-ppm levels. The resistive gas sensor's operation is primarily based on changes in the electrical resistance of the f-MWCNT network as a result of its selective interaction with the specific target gas in a two-pole format. The degree to which the electrical resistance of the sensing film increases or decreases is determined by the concentration of the target gas to which it is exposed. As a result, the target gas can be detected both qualitatively and quantitatively. The sensitivity of 100 ppb and 300 ppb with the sensor response time of â¼30 s and â¼50 s for NOx and CO respectively were recorded using our gas sensor and was found noticeably efficient than conventional MOS-based solid-state gas detectors. It was also realized that the corona-assisted, electrostatic, self-assembled MWCNT based sensor fabrication technique is fast, simple, low-cost, and environmentally friendly for commercial-scale production of gas sensors. This approach also extends many technical merits such as simultaneous deposition and functionalization of MWCNTs at (RT = 30 °C) room temperature for specific target analyte detection. These unique characteristics make f-MWCNTs based devices very appealing for real-time commercial and domestic gas sensing applications.
Asunto(s)
Nanotubos de Carbono , Humanos , Óxidos de Nitrógeno , Electricidad Estática , TemperaturaRESUMEN
Water in its various forms has been found to be one of the most abundant sources of energy on the planet after solar energy, and hydroelectric power plays a key role in renewable-energy supplies. Traditionally, harvesting tremendous amounts of hydrodynamic energy requires the deployment of complex, bulky, and expensive electromagnetic generators, which become inefficient at lower volumes of flowing or falling water, and then the energy is stored when there is an excess, but these techniques remain largely unperfected. Regardless of the diversity of development strategies, adopted methodologies, and working mechanisms, there are a wide range of energy scavengers, to effectively harness environmental friendly alternative energy sources. Robust, sustainable and technologically effective water energy harvesting devices, especially hydroelectric nanogenerators, are in the research spotlight globally, due to their numerous benefits to society, including cost effectiveness, clean and continuous electricity generation, and environmental applicability. Here the design and working mechanism involved in the development of a microporous polymer membrane assisted unique hydroelectric generator (MPA-HEG) based on triboelectrification and electrostatic induction phenomena is reported, which scavenges energy from continuously dripping water droplets sliding onto the surface of a hydrophobic microporous polymer membrane. MPA-HEG utilizes a very simple architecture that consists of a hydrophobic microporous polymer, poly(tetrafluoroethylene) (PTFE), membrane on a single-sided copper-clad laminate as a substrate and an aluminium electrode. Unlike other reported water energy harvesting devices with similar functionalities, the rational design of MPA-HEG does not necessitate any technologically complex structures to be embedded in the substrate. It has also been revealed that the interaction of water droplets on the smooth, water-resistant solid polymer surface in MPA-HEG switches 'ON' and connects the originally disconnected equivalent electrical components at the solid-liquid-solid interfaces, giving an uninterrupted electrical circuit, and transmuting the conservative interfacial effects into a bulk mechanism. Consequently, the instantaneous power output shows a vast increase over equivalent devices that are constrained either to triboelectric interfacial effects or moisture-induced electricity generation. This could serve the purpose of validating the inherent advantages of developing self-powered electronic devices, and this approach can also be effectively exploited for boosted power generation with realistic future applications.
RESUMEN
This chapter constitutes a practical guide to using the "pEAQ" vector series for transient or stable expression of one or more protein(s) in Nicotiana benthamiana plants. The pEAQ vectors are a series of small binary vectors designed for controlled expression of multiple proteins in plants. To achieve high levels of expression, an expression system based on translational enhancement by the untranslated regions of RNA-2 from cowpea mosaic virus (CPMV), named CPMV-HT, is used. The expression vector pEAQ-HT combines the user-friendly pEAQ plasmid with CPMV-HT to provide a system for high-level expression of proteins in plants.
Asunto(s)
Comovirus/genética , Ingeniería Genética/métodos , Vectores Genéticos , Nicotiana/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes , PlásmidosRESUMEN
Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed.
Asunto(s)
Proteínas de la Cápside/química , Comovirus/química , Cristalografía por Rayos X/métodos , Proteómica/métodos , Proteínas de la Cápside/metabolismo , Comovirus/metabolismo , Microscopía por Crioelectrón , Espectrometría de Masas , Modelos Moleculares , Estructura Secundaria de Proteína , Proteolisis , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión/química , Virión/metabolismoRESUMEN
Cowpea mosaic virus is a plant-infecting member of the Picornavirales and is of major interest in the development of biotechnology applications. Despite the availability of >100 crystal structures of Picornavirales capsids, relatively little is known about the mechanisms of capsid assembly and genome encapsidation. Here we have determined cryo-electron microscopy reconstructions for the wild-type virus and an empty virus-like particle, to 3.4 Å and 3.0 Å resolution, respectively, and built de novo atomic models of their capsids. These new structures reveal the C-terminal region of the small coat protein subunit, which is essential for virus assembly and which was missing from previously determined crystal structures, as well as residues that bind to the viral genome. These observations allow us to develop a new model for genome encapsidation and capsid assembly.