RESUMEN
Endothelin-1 induced signaling is characterized by an early induction of a nuclear factor-kappa B p65/mitogen-activated phosphokinase p38 transcription complex via its A-receptor versus a late induction via diacylglycerol, and protein kinase C. A possible interaction between these two pathways and a potential function for protein kinase C in this context has not previously been elucidated. Here we report that in Caki-1 tumor cells, protein kinase C α is a part of the transcription complex. With importin α4 and α5 as chaperones, the transcription complex transmigrates into the nucleus. Protein kinase C α blocks the nuclear release of pri-microRNA 15a by direct binding shown by electrophoretic mobility shift assay and Duolink immune histology. The expression levels of miRNA 15a can be further manipulated by transfection of si-protein kinase C α, or an expression vector containing protein kinase C α or miRNA 15. The miRNA 15a regulation by protein kinase C α is detectable in different malignant human tumor cell lines (renal cell carcinoma, breast carcinoma, and melanoma). Furthermore, all three cell lines harbor both endothelin receptors (ETAR/ETBR). Specific blockage of each receptor leads to major reduction of miRNA 15a expression due to increased nuclear protein kinase C α translocation. We conclude that the nuclear binding of pri-microRNA 15a is a novel function of protein kinase C α, which plays an important role in endothelin-1 mediated signaling. Since several endothelin-sensitive, malignant tumor cell lines harbor this regulation, it could indicate a more general role in tumor biology.
Asunto(s)
Núcleo Celular/metabolismo , Endotelinas/fisiología , MicroARNs/metabolismo , Proteína Quinasa C-alfa/fisiología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Endotelinas/metabolismo , Endotelinas/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/fisiologíaAsunto(s)
Linfocitos B/inmunología , Neoplasias del Sistema Nervioso Central/genética , Regulación Neoplásica de la Expresión Génica , Linfoma/genética , Mutación/genética , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal/fisiología , Linfocitos B/patología , Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/inmunología , Neoplasias del Sistema Nervioso Central/patología , Humanos , Linfoma/inmunología , Linfoma/patología , Receptores de Antígenos de Linfocitos B/inmunologíaRESUMEN
Ornithine decarboxylase (ODC), a homodimeric enzyme with a rate-limiting function in polyamine biosynthesis, is subject to a feedback control involving its selective proteolysis. Targeting of ODC monomers to the proteasome is mediated by ODC antizyme (OAZ), the expression of which is induced by high levels of polyamines. Here, we report our analysis of the N-terminal degron in Saccharomyces cerevisiae ODC and the mechanism of its antizyme-dependent targeting. This â¼45-residue domain of ODC [termed ODC degradation signal (ODS)] is essential for degradation of ODC. Extensive mutagenesis indicated that it is not a specific sequence within ODS that is important but, rather, its unstructured nature. Consistent with this conclusion, ODS could be functionally replaced by an unrelated unstructured domain. We show that increasing the distance of ODS to the rest of the ODC protein reduced the dependence on Oaz1 for targeting, indicating that exposure of ODS is critical for its function. Disruption of ODC dimers by introducing interface mutations, in contrast, was insufficient for targeting. Binding of Oaz1 to ODC monomers is thus required to activate ODS. Fusion of ODS to the N terminus of Ura3 was sufficient to convert it into a ubiquitin-independent substrate of the proteasome. By contrast, ODS failed to destabilize maltose-binding protein or dihydrofolate reductase, indicating that this degron only operates in an appropriate structural context that enables rapid unfolding.