Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Immunol ; 51(9): 2348-2350, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34019695

RESUMEN

The strongest genetic and environmental risk factors for MS, an inflammatory CNS disease, are HLA-DRB1*15:01 and EBV. This work shows that HLA-DRB1*15:01 acts as a co-receptor for EBV infection of a B cell line, suggesting a mechanistic link between both risk factors for MS.


Asunto(s)
Cadenas HLA-DRB1/metabolismo , Herpesvirus Humano 4/metabolismo , Esclerosis Múltiple/virología , Receptores Virales/metabolismo , Linfocitos B/virología , Línea Celular , Infecciones por Virus de Epstein-Barr/patología , Humanos , Esclerosis Múltiple/etiología , Factores de Riesgo
2.
Eur J Immunol ; 47(7): 1220-1231, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28426152

RESUMEN

Preformed cellular alloreactivity can exist prior to transplantation and may contribute to rejection. Here, we used a rapid flow-cytometric whole-blood assay to characterize the extent of alloreactive T cells among 1491 stimulatory reactions from 61 renal transplant candidates and 75 controls. The role of preformed donor-specific alloreactive T cells in cellular rejection was prospectively analyzed in 21 renal transplant recipients. Alloreactive CD8+ T cells were more frequent than respective CD4+ T cells, and these levels were stable over time. CD8+ T cells were effector-memory T cells largely negative for expression of CD27, CD62L, and CCR7, and were susceptible to steroid and calcineurin inhibitor inhibition. Alloreactivity was more frequent in samples with higher number of HLA mismatches. Moreover, the percentage of individuals with alloreactive T cells was higher in transplant candidates than in controls. Among transplant candidates, 5/61 exhibited alloreactive CD8+ T cells against most stimulators, 23/61 toward a limited number of stimulators, and 33/61 did not show any alloreactivity. Among 21 renal transplant recipients followed prospectively, one had donor-specific preformed T-cell alloreactivity. She was the only patient who developed cellular rejection posttransplantation. In conclusion, donor-specific alloreactive T cells may be rapidly quantified from whole blood, and may predict cellular rejection after transplantation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Rechazo de Injerto , Trasplante de Riñón , Adulto , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Inhibidores de la Calcineurina/farmacología , Femenino , Citometría de Flujo , Antígenos HLA/inmunología , Humanos , Memoria Inmunológica , Selectina L/genética , Selectina L/inmunología , Masculino , Persona de Mediana Edad , Receptores CCR7/deficiencia , Receptores CCR7/genética , Receptores CCR7/inmunología , Donantes de Tejidos , Trasplante Homólogo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/deficiencia , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
3.
IEEE Trans Vis Comput Graph ; 30(4): 1984-1997, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38019636

RESUMEN

Molecular docking is a key technique in various fields like structural biology, medicinal chemistry, and biotechnology. It is widely used for virtual screening during drug discovery, computer-assisted drug design, and protein engineering. A general molecular docking process consists of the target and ligand selection, their preparation, and the docking process itself, followed by the evaluation of the results. However, the most commonly used docking software provides no or very basic evaluation possibilities. Scripting and external molecular viewers are often used, which are not designed for an efficient analysis of docking results. Therefore, we developed InVADo, a comprehensive interactive visual analysis tool for large docking data. It consists of multiple linked 2D and 3D views. It filters and spatially clusters the data, and enriches it with post-docking analysis results of protein-ligand interactions and functional groups, to enable well-founded decision-making. In an exemplary case study, domain experts confirmed that InVADo facilitates and accelerates the analysis workflow. They rated it as a convenient, comprehensive, and feature-rich tool, especially useful for virtual screening.


Asunto(s)
Gráficos por Computador , Programas Informáticos , Simulación del Acoplamiento Molecular , Ligandos , Descubrimiento de Drogas/métodos
4.
Blood Adv ; 7(6): 878-892, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36129841

RESUMEN

In the era of blood group genomics, reference collections of complete and fully resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (ie, separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using the latest third-generation long-read sequencing, we generated a collection of fully resolved sequences for all 6 main ABO allele groups: ABO∗A1/A2/B/O.01.01/O.01.02/O.02. We selected 77 samples from an ABO genotype data set (n = 25 200) of serologically typed Swiss blood donors. The entire ABO gene was amplified in 2 overlapping long-range polymerase chain reactions (covering ∼23.6 kb) and sequenced by long-read Oxford Nanopore sequencing. For quality validation, 2 samples per ABO group were resequenced using Illumina and Pacific Biosciences technology. All 154 full-length ABO sequences were resolved as haplotypes. We observed novel, distinct sequence patterns for each ABO group. Most genetic diversity was found between, not within, ABO groups. Phylogenetic tree and haplotype network analyses highlighted distinct clades of each ABO group. Strikingly, our data uncovered 4 genetic variants putatively specific for ABO∗A1, for which direct diagnostic targets are currently lacking. We validated A1-diagnostic potential using whole-genome data (n = 4872) of a multiethnic cohort. Overall, our sequencing strategy proved powerful for producing high-quality ABO haplotypes and holds promise for generating similar collections for other blood groups. The publicly available collection of 154 haplotypes will serve as a valuable resource for molecular analyses of ABO, as well as studies about the function and evolutionary history of ABO.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Humanos , Alelos , Haplotipos , Sistema del Grupo Sanguíneo ABO/genética , Filogenia , Genotipo
5.
J Clin Microbiol ; 40(2): 351-8, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11825941

RESUMEN

Epstein-Barr virus (EBV)-induced posttransplant lymphoproliferative disease (PTLD) continues to be a serious complication following transplantation. The aim of the present study was to evaluate the EBV load as a parameter for the prediction and monitoring of PTLD. The EBV load was analyzed by a quantitative competitive PCR with 417 whole-blood samples of 59 patients after allogeneic stem cell transplantation (SCT). The EBV load was positive for all 9 patients with PTLD and for 17 patients without PTLD. The viral loads of patients with manifest PTLD differed from the loads of those without PTLD (median loads, 1.4 x 10(6) versus 4 x 10(4) copies/microg of DNA; P < 0.0001). A threshold value of 10(5) copies/microg of DNA showed the best diagnostic efficacy (sensitivity, 87%; specificity, 91%). However, in patients with less than three major risk factors for PTLD, the positive predictive value of this threshold was rather low. One week prior to the manifestation of PTLD, the EBV load was as low in patients who developed PTLD as in patients without disease (median, 2.2 x 10(4) copies/microg of DNA; P was not significant). EBV DNA tested positive first at 20 to 71 days prior to the clinical manifestation of PTLD and occurred with the same delay after transplantation regardless of disease (median delay, 52 versus 63 days; P was not significant). EBV DNA was detected earlier in patients with primary infections than in those with reactivations (33 versus 79 days; P = 0.01), but the peak levels were similar in the two groups. EBV primary infection or EBV reactivation is frequent in patients after allogeneic SCT but results in PTLD only in a subgroup of patients. Although evaluation of the EBV load has limitations, the EBV load represents a valuable parameter to guide therapy.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Herpesvirus Humano 4/fisiología , Trastornos Linfoproliferativos/diagnóstico , Trasplante Homólogo/efectos adversos , Carga Viral , Adolescente , Adulto , Niño , Preescolar , ADN Viral/sangre , Infecciones por Virus de Epstein-Barr/virología , Femenino , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Lactante , Trastornos Linfoproliferativos/virología , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA