Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777142

RESUMEN

Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.


Asunto(s)
Proteína 3 de Unión a Ácidos Grasos , Proteínas de Unión a Ácidos Grasos , Unión Proteica , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Humanos , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteína 3 de Unión a Ácidos Grasos/química , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Termodinámica , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Sitios de Unión
2.
Biochim Biophys Acta Biomembr ; 1863(10): 183681, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34186033

RESUMEN

With this study we aim at comparing the well-known lipid membrane model system of liposomes and polymer-encapsulated nanodiscs regarding their lipid properties. Using differential scanning calorimetry (DSC) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy, we characterize the temperature-dependent lipid behavior within 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes and nanodiscs made from such liposomes by application of various polymers based on styrene-co-maleic acid (SMA), diisobutylene-alt-maleic acid (DIBMA), and styrene-co-maleic amide sulfobetaine (SMA-SB), a new SMA-derived copolymer containing sulfobetaine side chains. By incorporating a spin label doxyl moiety into the lipid bilayer in position 16 or 5 we were able to study the micropolarity as well as rotational restrictions onto the lipids in the apolar bilayer center and the chain region adjacent to the carbonyl groups, respectively. Our results suggest that all polymers broaden the main melting transition of DMPC, change the water accessibility within the lipid bilayer, and exhibit additional constraints onto the lipids. Independent of the used polymer, the rotational mobility of both spin-labeled lipids decreased with DIBMA exerting less restraints probably due to its aliphatic side chains. Our findings imply that the choice of the solubilizing polymer has to be considered an important step to form lipid nanodiscs which should be included into research of lipid membranes and membrane proteins in the future.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Lípidos/química , Nanoestructuras/química , Polímeros/química , Rastreo Diferencial de Calorimetría , Liposomas , Microscopía Electrónica de Transmisión , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA