Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2220882120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802418

RESUMEN

Pathogens such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), influenza, and rhinoviruses are transmitted by airborne aerosol respiratory particles that are exhaled by infectious subjects. We have previously reported that the emission of aerosol particles increases on average 132-fold from rest to maximal endurance exercise. The aims of this study are to first measure aerosol particle emission during an isokinetic resistance exercise at 80% of the maximal voluntary contraction until exhaustion, second to compare aerosol particle emission during a typical spinning class session versus a three-set resistance training session. Finally, we then used this data to calculate the risk of infection during endurance and resistance exercise sessions with different mitigation strategies. During a set of isokinetic resistance exercise, aerosol particle emission increased 10-fold from 5,400 ± 1,200 particles/min at rest to 59,000 ± 69,900 particles/min during a set of resistance exercise. We found that aerosol particle emission per minute is on average 4.9-times lower during a resistance training session than during a spinning class. Using this data, we determined that the simulated infection risk increase during an endurance exercise session was sixfold higher than during a resistance exercise session when assuming one infected participant in the class. Collectively, this data helps to select mitigation measures for indoor resistance and endurance exercise classes at times where the risk of aerosol-transmitted infectious disease with severe outcomes is high.


Asunto(s)
COVID-19 , Entrenamiento de Fuerza , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Aerosoles y Gotitas Respiratorias , Ejercicio Físico
2.
Proc Natl Acad Sci U S A ; 120(22): e2301145120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216504

RESUMEN

Airborne respiratory aerosol particle transmission of pathogens such as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), influenza, or rhinoviruses plays a major role in the spread of infectious diseases. The infection risk is increased during indoor exercise, as aerosol particle emission can increase by more than 100-fold from rest to maximal exercise. Earlier studies have investigated the effect of factors such as age, sex, and body mass index (BMI), but only at rest and without taking ventilation into account. Here, we report that during both rest and exercise, subjects aged 60 to 76 y emit on average more than twice as many aerosol particles per minute than subjects aged 20 to 39 y. In terms of volume, older subjects emit on average five times as much dry volume (i.e., the residue of dried aerosol particles) than younger subjects. There was no statistically significant effect of sex or BMI within the test group. Together, this suggests that aging of the lung and respiratory tract is associated with an increased generation of aerosol particles irrespective of ventilation. Our findings demonstrate that age and exercise increase aerosol particle emission. In contrast, sex or BMI only have minor effects.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Tamaño de la Partícula , Aerosoles y Gotitas Respiratorias , Pulmón
3.
Proc Natl Acad Sci U S A ; 119(22): e2202521119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605123

RESUMEN

Many airborne pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted indoors via aerosol particles. During exercise, pulmonary ventilation can increase over 10-fold, and therefore, exercisers will exhale a greater volume of aerosol-containing air. However, we currently do not know how exercise affects the concentration of aerosol particles in exhaled air and the overall emission of aerosol particles. Consequently, we developed a method to measure in parallel the concentration of aerosol particles in expired air, pulmonary ventilation, and aerosol particle emission at rest and during a graded exercise test to exhaustion. We used this method to test eight women and eight men in a descriptive study. We found that the aerosol particle concentration in expired air increased significantly from 56 ± 53 particles/liter at rest to 633 ± 422 particles/liter at maximal intensity. Aerosol particle emission per subject increased significantly by a factor of 132 from 580 ± 489 particles/min at rest to a super emission of 76,200 ± 48,000 particles/min during maximal exercise. There were no sex differences in aerosol particle emission, but endurance-training subjects emitted significantly more aerosol particles during maximal exercise than untrained subjects. Overall, aerosol particle emission increased moderately up to an exercise intensity of ∼2 W/kg and exponentially thereafter. Together, these data might partly explain superspreader events especially during high-intensity group exercise indoors and suggest that strong infection prevention measures are needed especially during exercise at an intensity that exceeds ∼2 W/kg. Investigations of influencing factors like airway and whole-body hydration status during exercise on aerosol particle generation are needed.


Asunto(s)
Aerosoles , COVID-19 , Ejercicio Físico , SARS-CoV-2 , Movimientos del Aire , COVID-19/prevención & control , Humanos , Respiración
4.
Cell Tissue Res ; 395(3): 271-283, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183459

RESUMEN

In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.


Asunto(s)
Fosfoglicerato-Deshidrogenasa , Células Satélite del Músculo Esquelético , Ratones , Animales , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Proliferación Celular/fisiología , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo
5.
Transgenic Res ; 31(2): 227-237, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34984591

RESUMEN

The Hippo signal transduction network regulates transcription through Yap/Taz-Tead1-4 in many tissues including skeletal muscle. Whilst transgenic mice have been generated for many Hippo genes, the resultant skeletal muscle phenotypes were not always characterized. Here, we aimed to phenotype the hindlimb muscles of Hippo gene-mutated Lats1-/-, Mst2-/-, Vgll3-/-, and Vgll4+/- mice. This analysis revealed that Lats1-/- mice have 11% more slow type I fibers than age and sex-matched wild-type controls. Moreover, the mRNA expression of slow Myh7 increased by 50%, and the concentration of type I myosin heavy chain is 80% higher in Lats1-/- mice than in age and sex-matched wild-type controls. Second, to find out whether exercise-related stimuli affect Lats1, we stimulated C2C12 myotubes with the hypertrophy agent clenbuterol or the energy stress agent AICAR. We found that both stimulated Lats1 expression by 1.2 and 1.3 fold respectively. Third, we re-analyzed published datasets and found that Lats1 mRNA in muscle is 63% higher in muscular dystrophy, increases by 17-77% after cardiotoxin-induced muscle injury, by 41-71% in muscles during overload-induced hypertrophy, and by 19-21% after endurance exercise when compared to respective controls. To conclude, Lats1 contributes to the regulation of muscle fiber type proportions, and its expression is regulated by physiological and pathological situations in skeletal muscle.


Asunto(s)
Músculo Esquelético , Transducción de Señal , Animales , Hipertrofia/metabolismo , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero , Transducción de Señal/genética
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361732

RESUMEN

Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 "muscle fibre genes" (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.


Asunto(s)
Fibras Musculares Esqueléticas , Cadenas Pesadas de Miosina , Adulto , Ratones , Animales , Humanos , Fibras Musculares Esqueléticas/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Estimulación Eléctrica , Músculo Esquelético/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo
7.
J Cell Sci ; 132(13)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138678

RESUMEN

VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Neoplasias/metabolismo , Unión Proteica , Factores de Transcripción de Dominio TEA , Transcriptoma/genética
8.
Clin Chem Lab Med ; 59(10): 1719-1727, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-33977686

RESUMEN

OBJECTIVES: Micro ribonucleic acids (miRNAs) are small non-coding RNA molecules that control gene expression by translational inhibition. Exercise has been shown to affect several miRNAs' expression in healthy subjects, but this has not yet been studied in patients with coronary artery disease (CAD). Since exercise training confers beneficial long-term effects and may also trigger acute coronary events, it is of utmost interest to be able to identify those who are risk for untoward effects. Therefore, we set out to assess miRNA expression in response to maximal ergospirometry in patients with CAD. METHODS: Total RNA was extracted from blood drawn immediately before and 5 min after maximal cycle-ergospirometry (10 male and 10 female CAD patients). A qRT-PCR was performed for 187 target miRNAs associated with endothelial function/dysfunction, cardiovascular disease, myocardial infarction, and sudden cardiac death. RESULTS: In response to a maximal ergospirometry, 33 miRNAs significantly changed their expression levels. Of these miRNAs 16 were significantly differently expressed between gender. Using multi-variance analysis, nine miRNAs (let-7e-5p; miR-1; miR-19b-1-5p; miR-103a-3p; miR-148b-3p; miR-181b-5p; miR-188-5p; miR-423-5p; miR-874-3p) showed significantly different responses to maximal ergospirometry between genders. CONCLUSIONS: We report for the first time that in patients with CAD, miRNA expression is amenable to maximal ergospirometry and that the extent of changes differs between genders. Affected by exercise and gender were miRNAs that are associated, among others, with pathways for glucose metabolism, oxidative stress, and angiogenesis. Future studies should assess whether disease-specific miRNA expression in response to maximal exercise might serve as a marker for patient outcome.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Infarto del Miocardio , Biomarcadores , Enfermedad de la Arteria Coronaria/genética , Prueba de Esfuerzo , Femenino , Humanos , Masculino
9.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992783

RESUMEN

Nearly 100 years ago, Otto Warburg investigated the metabolism of growing tissues and discovered that tumors reprogram their metabolism. It is poorly understood whether and how hypertrophying muscle, another growing tissue, reprograms its metabolism too. Here, we studied pyruvate kinase muscle (PKM), which can be spliced into two isoforms (PKM1, PKM2). This is of interest, because PKM2 redirects glycolytic flux towards biosynthetic pathways, which might contribute to muscle hypertrophy too. We first investigated whether resistance exercise changes PKM isoform expression in growing human skeletal muscle and found that PKM2 abundance increases after six weeks of resistance training, whereas PKM1 decreases. Second, we determined that Pkm2 expression is higher in fast compared to slow fiber types in rat skeletal muscle. Third, by inducing hypertrophy in differentiated C2C12 cells and by selectively silencing Pkm1 and/or Pkm2 with siRNA, we found that PKM2 limits myotube growth. We conclude that PKM2 contributes to hypertrophy in C2C12 myotubes and indicates a changed metabolic environment within hypertrophying human skeletal muscle fibers. PKM2 is preferentially expressed in fast muscle fibers and may partly contribute to the increased potential for hypertrophy in fast fibers.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares de Contracción Lenta/enzimología , Entrenamiento de Fuerza , Hormonas Tiroideas/metabolismo , Adulto , Línea Celular , Humanos , Hipertrofia , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Proteínas de Unión a Hormona Tiroide
10.
J Sports Sci Med ; 19(3): 460-468, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32874098

RESUMEN

Sedentary lifestyle predisposes to endothelial dysfunction, increased arterial stiffness and cardiovascular diseases, all of which can be positively modified by regular physical exercise training. A decrease in physical activity during winter months coincides with higher rates of cardiovascular events. In order to identify winter sports suitable to overcome this seasonal exercise deficit and thus contribute to cardiovascular health, it was the aim of this study to compare immediate effects of cross-country skiing (XCS) and alpine skiing (AS) on arterial stiffness as an alternative to indoor cycling (IC). After baseline assessment, eighteen healthy subjects performed one session of XCS, AS, and IC in randomized order. Pulse wave analysis was conducted (Mobil-o-Graph®) before and 10-min after exercise. Parameters of arterial stiffness and wave reflection were reduced after XCS and IC, but not after AS: central systolic blood pressure (IC: -8.0 ± 5.4 mmHg; p < 0.001), amplitude of the backward pressure wave (IC: -1.4 ± 2.7 mmHg; p < 0.05), reflection coefficient (XCS: -6.0 ± 7.8%; IC: -5.7 ± 8.1%; both p < 0.1), and pulse wave velocity (IC by -0.19 ± 0.27 m/s; p < 0.01). Higher exercise intensities correlated with greater reductions of arterial stiffness (all p < 0.05). Single sessions of XCS, IC but not AS led to comparable improvement in arterial stiffness, which was even more pronounced during higher exercise intensities. With regard to arterial stiffness, IC and XCS emerge as more effective to counteract the winter exercise deficit and thus the deleterious cardiovascular effects of a sedentary lifestyle.


Asunto(s)
Ciclismo/fisiología , Esquí/fisiología , Rigidez Vascular , Adulto , Presión Sanguínea , Metabolismo Energético , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Análisis de la Onda del Pulso , Factores de Riesgo , Conducta Sedentaria
11.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934789

RESUMEN

Cartilage defects represent an increasing pathology among active individuals that affects the ability to contribute to sports and daily life. Cell therapy, such as autologous chondrocyte implantation (ACI), is a widespread option to treat larger cartilage defects still lacking standardization of in vitro cell culture parameters. We hypothesize that mRNA expression of cytokines and proteases before and after ACI is influenced by in vitro parameters: cell-passage, cell-density and membrane-holding time. Knee joint articular chondrocytes, harvested from rabbits (n = 60), were cultured/processed under varying conditions: after three different cell-passages (P1, P3, and P5), cells were seeded on 3D collagen matrices (approximately 25 mm³) at three different densities (2 × 105/matrix, 1 × 106/matrix, and 3 × 106/matrix) combined with two different membrane-holding times (5 h and two weeks) prior autologous transplantation. Those combinations resulted in 18 different in vivo experimental groups. Two defects/knee/animal were created in the trochlear groove (defect dimension: ∅ 4 mm × 2 mm). Four identical cell-seeded matrices (CSM) were assembled and grouped in two pairs: One pair giving pre-operative in vitro data (CSM-i), the other pair was implanted in vivo and harvested 12 weeks post-implantation (CSM-e). CSMs were analyzed for TNF-α, IL-1ß, MMP-1, and MMP-3 via qPCR. CSM-i showed higher expression of IL-1ß, MMP-1, and MMP-3 compared to CSM-e. TNF-α expression was higher in CSM-e. Linearity between CSM-i and CSM-e values was found, except for TNF-α. IL-1ß expression was higher in CSM-i at higher passage and longer membrane-holding time. IL-1ß expression decreased with prolonged membrane-holding time in CSM-e. For TNF-α, the reverse was true. Lower cell-passages and lower membrane-holding time resulted in stronger TNF-α expression. Prolonged membrane-holding time resulted in increased MMP levels among CSM-i and CSM-e. Cellular density was of no significant effect. We demonstrated cytokine and MMP expression levels to be directly influenced by in vitro culture settings in ACI. Linearity of expression-patterns between CSM-i and CSM-e may predict ACI regeneration outcome in vivo. Cytokine/protease interaction within the regenerate tissue could be guided via adjusting in vitro culture parameters, of which membrane-holding time resulted the most relevant one.


Asunto(s)
Condrocitos/citología , Condrocitos/trasplante , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Inflamación/patología , Animales , Células Cultivadas , Condrocitos/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Trasplante Autólogo
12.
Pflugers Arch ; 470(11): 1647-1657, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30006848

RESUMEN

Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125 rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methemoglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BW increased (+ 30 ± 9 g, mean ± SD) at day 12, but decreased with C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p. (p = 0.005). Compared to controls, TMM decreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) and with superimposed disuse (0.18 ± 0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.


Asunto(s)
Compuestos de Bencilideno/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Animales , Compuestos de Bencilideno/farmacología , Peso Corporal , Infecciones por Corynebacterium/complicaciones , Inmovilización/efectos adversos , Masculino , Metahemoglobina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
13.
J Sports Sci Med ; 15(1): 184-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26957942

RESUMEN

Since physical inactivity especially prevails during winter months, we set out to identify outdoor alternatives to indoor cycling (IC) by comparing the metabolic and cardiorespiratory responses during alpine skiing (AS), cross-country skiing (XCS) and IC and analyse the effects of sex, age and fitness level in this comparison. Twenty one healthy subjects performed alpine skiing (AS), cross-country skiing (XCS), and IC. Oxygen uptake (VO2), total energy expenditure (EE), heart rate (HR), lactate, blood glucose and rate of perceived exertion (RPE) were determined during three 4-min stages of low, moderate and high intensity. During XCS and IC VO2max and EE were higher than during AS. At least 2½ hours of AS are necessary to reach the same EE as during one hour of XCS or IC. HR, VO2, lactate, and RPEarms were highest during XCS, whereas RPEwhole-body was similar and RPElegs lower than during AS and IC, respectively. Weight adjusted VO2 and EE were higher in men than in women while fitness level had no effect. Male, fit and young participants were able to increase their EE and VO2 values more pronounced. Both AS and XCS can be individually tailored to serve as alternatives to IC and may thus help to overcome the winter activity deficit. XCS was found to be the most effective activity for generating a high EE and VO2 while AS was the most demanding activity for the legs. Key pointsDuring cross-country skiing and indoor cycling VO2max and energy expenditure were higher than during alpine skiingApproximately 2½ hours of alpine skiing are necessary to reach the same energy expenditure of one hour of cross-country skiing or indoor cycling.Alpine skiing and cross-country skiing can be individually tailored to serve as sports alternatives in winter to activity deficit.By applying different skiing modes as parallel ski steering, carving long radii and short turn skiing, metabolic and cardiorespiratory response can be increased during alpine skiing.Male, fit and young participants were able to increase their energy expenditure and VO2 more pronounced with an increase in intensity compared with their counterparts.

14.
Am J Phys Anthropol ; 155(4): 496-512, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25130609

RESUMEN

Strontium and oxygen isotope analysis of human remains from the early La Tène (fourth/third century BC) Czech cemeteries of Radovesice I (RAD I), Radovesice II (RAD II), and Kutná Hora were conducted to investigate the importance of residential changes during the period of the historic "Celtic migrations". In the initial phases (LT A/B), the grave goods of these cemeteries are typical for the core area of the La Tène culture, while around 300 BC (LT B2) an alteration occurs and typical Bohemian styles arise, and connections to Moravia and the Danubian region become visible. The strontium isotope ratios are highly varied with (87) Sr/(86) Sr values between 0.7062 and 0.7153 in Radovesice, and between 0.7082 and 0.7147 in Kutná Hora. The oxygen isotope data are more homogeneous and yield δ(18) Op ratios from 14.8‰ to 17.2‰ [mean: 16.2‰ ± 0.5 (1σ)] in Radovesice, and from 14.9‰ to 17.3‰ [mean: 16.5‰ ± 0.6 (1σ)] in Kutná Hora. Because the geological properties of the landscapes around the sites are variable and complex, most of the observed variations among the strontium isotope ratios may have been caused by agricultural practices, such as regularly changing farming land. Nevertheless, there are some individuals who differ completely from the regional isotopic baseline values. This suggests that at least a small part of the community migrated, which does not seem to be correlated with any particular phase of the La Tène period. Remarkably, it is mainly males who seem to be of nonlocal origin, and particularly those who were buried as warriors. Females, on the other hand, appear to have been more closely bonded to the Bohemian region. Whether the "foreign" individuals with differing isotopic compositions came from Moravia or the Danubian region remains debatable.


Asunto(s)
Huesos/química , Esmalte Dental/química , Migración Humana/historia , Isótopos de Oxígeno/análisis , Isótopos de Estroncio/análisis , Adolescente , Adulto , Antropología Física , Cementerios , Niño , República Checa , Femenino , Historia Antigua , Humanos , Masculino , Persona de Mediana Edad , Datación Radiométrica , Adulto Joven
15.
Sports Med Open ; 10(1): 50, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695978

RESUMEN

BACKGROUND: A typical training plan is a mix of many training sessions with different intensities and durations to achieve a specific goal, like running a marathon in a certain time. Scientific publications provide little specific information to aid in writing a comprehensive training plan. This review aims to systematically and quantitatively analyse the last 12 weeks before a marathon as recommended in 92 sub-elite training plans. METHODS: We retrieved 92 marathon training plans and linked their running training sessions to five intensity zones. Subsequently, each training plan was grouped based on the total running volume in peak week into high (> 90 km/week), middle (65-90 km/week), and low (< 65 km/week) training volume plan categories. RESULTS: In the final 12 weeks before a race, recommended weekly running volume averaged 108 km, 59 km, and 43 km for high, middle, and low distance marathon training plans. The intensity distribution of these plans followed a pyramidal training structure with 15-67-10-5-3%, 14-63-18-2-3%, and 12-67-17-2-2% in zones 1, 2, 3, 4, and 5, for high, middle, and low volume training plans, respectively. CONCLUSIONS: By quantitatively analysing 92 recommended marathon training plans, we can specify typical recommendations for the last 12 weeks before a marathon race. Whilst this approach has obvious limitations such as no evidence for the effectiveness of the training plans investigated, it is arguably a useful strategy to narrow the gap between science and practice.

16.
Sci Rep ; 14(1): 4644, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409397

RESUMEN

Airborne transmission of pathogens plays a major role in the spread of infectious diseases. Aerosol particle production from the lung is thought to occur in the peripheral airways. In the present study we investigated eighty lung-healthy subjects of two age groups (20-39, 60-76 years) at rest and during exercise whether lung function parameters indicative of peripheral airway function were correlated with individual differences in aerosol particle emission. Lung function comprised spirometry and impulse oscillometry during quiet breathing and an expiratory vital capacity manoeuvre, using resistance (R5) and reactance at 5 Hz (X5) as indicators potentially related to peripheral airway function. The association between emission at different ventilation rates relative to maximum ventilation and lung function was assessed by regression analysis. In multiple regression analyses including age group, only vital capacity manoeuvre R5 at 15% to 50% of end-expiratory vital capacity as well as quiet breathing X5 were independently linked to particle emission at 20% to 50% of maximum ventilation, in addition to age group. The fact that age as predictive factor was still significant, although to a lower degree, points towards further effects of age, potentially involving surface properties not accounted for by impulse oscillometry parameters.


Asunto(s)
Resistencia de las Vías Respiratorias , Pulmón , Humanos , Adulto Joven , Adulto , Oscilometría , Pruebas de Función Respiratoria , Espirometría , Volumen Espiratorio Forzado
17.
J Cachexia Sarcopenia Muscle ; 15(3): 989-1002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38742477

RESUMEN

BACKGROUND: Proliferating cancer cells shift their metabolism towards glycolysis, even in the presence of oxygen, to especially generate glycolytic intermediates as substrates for anabolic reactions. We hypothesize that a similar metabolic remodelling occurs during skeletal muscle hypertrophy. METHODS: We used mass spectrometry in hypertrophying C2C12 myotubes in vitro and plantaris mouse muscle in vivo and assessed metabolomic changes and the incorporation of the [U-13C6]glucose tracer. We performed enzyme inhibition of the key serine synthesis pathway enzyme phosphoglycerate dehydrogenase (Phgdh) for further mechanistic analysis and conducted a systematic review to align any changes in metabolomics during muscle growth with published findings. Finally, the UK Biobank was used to link the findings to population level. RESULTS: The metabolomics analysis in myotubes revealed insulin-like growth factor-1 (IGF-1)-induced altered metabolite concentrations in anabolic pathways such as pentose phosphate (ribose-5-phosphate/ribulose-5-phosphate: +40%; P = 0.01) and serine synthesis pathway (serine: -36.8%; P = 0.009). Like the hypertrophy stimulation with IGF-1 in myotubes in vitro, the concentration of the dipeptide l-carnosine was decreased by 26.6% (P = 0.001) during skeletal muscle growth in vivo. However, phosphorylated sugar (glucose-6-phosphate, fructose-6-phosphate or glucose-1-phosphate) decreased by 32.2% (P = 0.004) in the overloaded muscle in vivo while increasing in the IGF-1-stimulated myotubes in vitro. The systematic review revealed that 10 metabolites linked to muscle hypertrophy were directly associated with glycolysis and its interconnected anabolic pathways. We demonstrated that labelled carbon from [U-13C6]glucose is increasingly incorporated by ~13% (P = 0.001) into the non-essential amino acids in hypertrophying myotubes, which is accompanied by an increased depletion of media serine (P = 0.006). The inhibition of Phgdh suppressed muscle protein synthesis in growing myotubes by 58.1% (P < 0.001), highlighting the importance of the serine synthesis pathway for maintaining muscle size. Utilizing data from the UK Biobank (n = 450 243), we then discerned genetic variations linked to the serine synthesis pathway (PHGDH and PSPH) and to its downstream enzyme (SHMT1), revealing their association with appendicular lean mass in humans (P < 5.0e-8). CONCLUSIONS: Understanding the mechanisms that regulate skeletal muscle mass will help in developing effective treatments for muscle weakness. Our results provide evidence for the metabolic rewiring of glycolytic intermediates into anabolic pathways during muscle growth, such as in serine synthesis.


Asunto(s)
Glucosa , Músculo Esquelético , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Animales , Ratones , Humanos , Hipertrofia , Fibras Musculares Esqueléticas/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolómica/métodos
18.
Pediatr Cardiol ; 34(3): 576-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22961347

RESUMEN

Intense exercise has been shown to have negative effects on systolic and diastolic ventricular function in adults. Very little is known about the normal reaction of the growing heart to endurance stress. For this study, 26 healthy children (18 males) with a mean age of 12.61 years (range, 7.92-16.42 years) took part in an age-adapted triathlon circuit. The athletes were investigated by two-dimensional (2D) echocardiographic/speckle tracking, M-mode, pulse-wave Doppler, color Doppler, and color-coded tissue Doppler at 2-4 weeks before and immediately after the race. After the competition, cardiac output increased, mediated by an increase in heart rate and not by an elevated preload, according the Frank-Starling mechanism. Two-dimensional speckle tracking showed a reduced longitudinal strain in the right and left ventricles and additionally reduced circumferential strain in the left ventricle. The late diastolic inflow velocities were increased in both ventricles, indicating reduced diastolic function due to an impairment of myocardial relaxation. Immediately after endurance exercise, systolic and diastolic functions were attenuated in children and adolescents. In contrast to adult studies, this study could show a heart rate-mediated increase in cardiac output. The sequelae of these alterations are unclear, and the growing heart especially may be more susceptible to myocardial damage caused by intense endurance stress.


Asunto(s)
Ecocardiografía/métodos , Prueba de Esfuerzo/métodos , Contracción Miocárdica/fisiología , Resistencia Física/fisiología , Adolescente , Adulto , Factores de Edad , Antropometría , Gasto Cardíaco/fisiología , Niño , Ecocardiografía Doppler en Color/métodos , Ecocardiografía Doppler de Pulso/métodos , Femenino , Alemania , Humanos , Masculino , Pediatría , Valores de Referencia , Medición de Riesgo , Factores Sexuales , Deportes/fisiología , Función Ventricular Izquierda/fisiología , Función Ventricular Derecha/fisiología
19.
Sports Med ; 53(6): 1255-1271, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36862339

RESUMEN

BACKGROUND: Advanced footwear technology improves average running economy compared with racing flats in sub-elite athletes. However, not all athletes benefit as performance changes vary from a 10% drawback to a 14% improvement. The main beneficiaries from such technologies, world-class athletes, have only been analyzed using race times. OBJECTIVE: The aim of this study was to measure running economy on a laboratory treadmill in advanced footwear technology compared to a traditional racing flat in world-class Kenyan (mean half-marathon time: 59:30 min:s) versus European amateur runners. METHODS: Seven world-class Kenyan and seven amateur European male runners completed a maximal oxygen uptake assessment and submaximal steady-state running economy trials in three different models of advanced footwear technology and a racing flat. To confirm our results and better understand the overall effect of new technology in running shoes, we conducted a systematic search and meta-analysis. RESULTS: Laboratory results revealed large variability in both world-class Kenyan road runners, which ranged from a 11.3% drawback to a 11.4% benefit, and amateur Europeans, which ranged from a 9.7% benefit to a 1.1% drawback in running economy of advanced footwear technology compared to a flat. The post-hoc meta-analysis revealed an overall significant medium benefit of advanced footwear technology on running economy compared with traditional flats. CONCLUSIONS: Variability of advanced footwear technology performance appears in both world-class and amateur runners, suggesting further testing should examine such variability to ensure validity of results and explain the cause as a more personalized approach to shoe selection might be necessary for optimal benefit.


Asunto(s)
Carrera , Humanos , Masculino , Atletas , Fenómenos Biomecánicos , Kenia , Carrera de Maratón , Zapatos
20.
PLoS One ; 18(5): e0285845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186604

RESUMEN

INTRODUCTION: COVID-19 is a multi-systemic disease which can target the lungs and the cardiovascular system and can also affect parts of the brain for prolonged periods of time. Even healthy athletes without comorbidities can be psychologically affected long-term by COVID-19. OBJECTIVE: This study aimed to investigate athletes' perceived mental stress and recovery levels in daily life, and their maximal aerobic power, at three different time points, post COVID-19. METHODS: In total, 99 athletes (62.6% male), who had been infected by COVID-19, filled out the Recovery Stress Questionnaire for Athletes (REST-Q-Sport) and completed cardiopulmonary exercise testing (endpoint maximal aerobic power output (Pmax)) at the initial screening (t1: 4 months after infection). Follow-up assessments occurred three (t2, n = 37) and seven months after t1 (t3, n = 19). RESULTS: Subgroup means from the Recovery category were significantly below the reference value of four at all three time points, except "General Recovery" (3.76 (± 0.96), p = 0.275, d = 0.968) at t3."Overtiredness" (2.34 (± 1.27), p = 0.020, r = 0.224) was significantly above the reference value of two at t1, while all other Stress subgroups were not significantly different from the reference value or were significantly below the maximum threshold of two at t1, t2 and t3. Spearman's ρ revealed a negative association between Pmax and the subcategories of stress (ρ = -0.54 to ρ = -0.11, p < 0.050), and positive correlations between Pmax and "Somatic Recovery" (ρ = 0.43, p < 0.001) and "General Recovery" (ρ = 0.23, p = 0.040) at t1. Pmax (t1: 3.83 (± 0.99), t2: 3.78 (± 1.14), ß = 0.06, p < 0.003) increased significantly from t1 to t2. In addition, REST-Q-Sport indicated a decrease in "Sleep" (t2 = 2.35 (± 0.62), t3 = 2.28(± 0.61), ß = -0.18, p < 0.023) at t3, when compared to t2. CONCLUSION: The perceived recovery seems to be negatively affected in post COVID-19 athletes. Physical performance post COVID-19 correlates with both "Emotional and Somatic Stress" and "Somatic and General Recovery", indicating potential mental and physical benefits of exercise. While it is evident that COVID-19, like other viral infections, may have an influence on physical performance, monitoring stress and recovery perceptions of athletes is critical to facilitate their return-to-sports, while minimizing long-term COVID-19 induced negative effects like the athletic objective and subjective perceived recovery and stress levels.


Asunto(s)
COVID-19 , Deportes , Humanos , Masculino , Femenino , Ejercicio Físico , Rendimiento Físico Funcional , Percepción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA