Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(5): 1001-14, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385964

RESUMEN

Checkpoints that limit stem cell self-renewal in response to DNA damage can contribute to cancer protection but may also promote tissue aging. Molecular components that control stem cell responses to DNA damage remain to be delineated. Using in vivo RNAi screens, we identified basic leucine zipper transcription factor, ATF-like (BATF) as a major component limiting self-renewal of hematopoietic stem cells (HSCs) in response to telomere dysfunction and γ-irradiation. DNA damage induces BATF in a G-CSF/STAT3-dependent manner resulting in lymphoid differentiation of HSCs. BATF deletion improves HSC self-renewal and function in response to γ-irradiation or telomere shortening but results in accumulation of DNA damage in HSCs. Analysis of bone marrow from patients with myelodysplastic syndrome supports the conclusion that DNA damage-dependent induction of BATF is conserved in human HSCs. Together, these results provide experimental evidence that a BATF-dependent differentiation checkpoint limits self-renewal of HSCs in response to DNA damage.


Asunto(s)
Puntos de Control del Ciclo Celular , Diferenciación Celular , Senescencia Celular , Daño del ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Acortamiento del Telómero
2.
Lancet ; 403(10426): 568-582, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006899

RESUMEN

Gene therapy has become a clinical reality as market-approved advanced therapy medicinal products for the treatment of distinct monogenetic diseases and B-cell malignancies. This Therapeutic Review aims to explain how progress in genome editing technologies offers the possibility to expand both therapeutic options and the types of diseases that will become treatable. To frame these impressive advances in the context of modern medicine, we incorporate examples from human clinical trials into our discussion on how genome editing will complement currently available strategies in gene therapy, which still mainly rely on gene addition strategies. Furthermore, safety considerations and ethical implications, including the issue of accessibility, are addressed as these crucial parameters will define the impact that gene therapy in general and genome editing in particular will have on how we treat patients in the near future.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Terapia Genética
3.
N Engl J Med ; 386(5): 415-427, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34891223

RESUMEN

BACKGROUND: Betibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent ß-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the ß-globin (ßA-T87Q) gene. METHODS: In this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent ß-thalassemia and a non-ß0/ß0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months). RESULTS: A total of 23 patients were enrolled and received treatment, with a median follow-up of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed. CONCLUSIONS: Treatment with beti-cel resulted in a sustained HbAT87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-ß0/ß0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.).


Asunto(s)
Productos Biológicos/uso terapéutico , Terapia Genética/métodos , Globinas beta/genética , Talasemia beta/terapia , Adolescente , Adulto , Productos Biológicos/efectos adversos , Busulfano/uso terapéutico , Niño , Transfusión de Eritrocitos/efectos adversos , Eritropoyesis , Femenino , Vectores Genéticos , Genotipo , Hemoglobinas/análisis , Humanos , Sobrecarga de Hierro/prevención & control , Lentivirus/genética , Masculino , Persona de Mediana Edad , Agonistas Mieloablativos/uso terapéutico , Talasemia beta/sangre , Talasemia beta/genética
4.
Eur J Immunol ; 54(7): e2451056, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593351

RESUMEN

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Hipermutación Somática de Inmunoglobulina , SARS-CoV-2/inmunología , Humanos , Hipermutación Somática de Inmunoglobulina/genética , COVID-19/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células B de Memoria/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Monoclonales/inmunología , Linfocitos B/inmunología , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Memoria Inmunológica/inmunología , Vacunas contra la COVID-19/inmunología
5.
Clin Immunol ; 260: 109902, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38218210

RESUMEN

The devastating impact of COVID-19 on global health shows the need to increase our pandemic preparedness. Recombinant therapeutic antibodies were successfully used to treat and protect at-risk patients from COVID-19. However, the currently circulating Omicron subvariants of SARS-CoV-2 are largely resistant to therapeutic antibodies, and novel approaches to generate broadly neutralizing antibodies are urgently needed. Here, we describe a tetravalent bispecific antibody, A7A9 TVB, which actively neutralized many SARS-CoV-2 variants of concern, including early Omicron subvariants. Interestingly, A7A9 TVB neutralized more variants at lower concentration as compared to the combination of its parental monoclonal antibodies, A7K and A9L. A7A9 also reduced the viral load of authentic Omicron BA.1 virus in infected pseudostratified primary human nasal epithelial cells. Overall, A7A9 displayed the characteristics of a potent broadly neutralizing antibody, which may be suitable for prophylactic and therapeutic applications in the clinics, thus highlighting the usefulness of an effective antibody-designing approach.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales/uso terapéutico , Padres , Anticuerpos Antivirales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico
7.
Mol Ther ; 31(12): 3502-3519, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915173

RESUMEN

Usher syndrome 1B (USH1B) is a devastating genetic disorder with congenital deafness, loss of balance, and blindness caused by mutations in the myosin-VIIa (MYO7A) gene, for which there is currently no cure. We developed a gene therapy approach addressing the vestibulo-cochlear deficits of USH1B using a third-generation, high-capacity lentiviral vector system capable of delivering the large 6,645-bp MYO7A cDNA. Lentivirally delivered MYO7A and co-encoded dTomato were successfully expressed in the cochlear cell line HEI-OC1. In normal-hearing mice, both cochlea and the vestibular organ were efficiently transduced, and ectopic MYO7A overexpression did not show any adverse effects. In Shaker-1 mice, an USH1B disease model based on Myo7a mutation, cochlear and vestibular hair cells, the main inner ear cell types affected in USH1B, were successfully transduced. In homozygous mutant mice, delivery of MYO7A at postnatal day 16 resulted in a trend for partial recovery of auditory function and in strongly reduced balance deficits. Heterozygous mutant mice were found to develop severe hearing loss at 6 months of age without balance deficits, and lentiviral MYO7A gene therapy completely rescued hearing to wild-type hearing thresholds. In summary, this study demonstrates improved hearing and balance function through lentiviral gene therapy in the inner ear.


Asunto(s)
Miosinas , Síndromes de Usher , Ratones , Animales , Miosinas/genética , Miosinas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Miosina VIIa/genética , Síndromes de Usher/genética , Síndromes de Usher/terapia , Modelos Animales de Enfermedad , Mutación , Terapia Genética
8.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256061

RESUMEN

The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs). In addition, we demonstrated, for the first time, the efficient knock-in potential of the platform in human iPSCs and achieved targeted integration of a GFP marker gene into the AAVS1 safe harbor site and a CSF2RA super-exon into CSF2RA in up to 90% of alleles without selection. Clonal analysis revealed bi-allelic integration in >50% of the screened iPSC clones without compromising their pluripotency and genomic integrity. Thus, in combination with the adeno-associated virus vector system, CRISPR-Cas12a Ultra provides a highly efficient genome editing platform for performing targeted knock-ins in human iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Alelos
9.
Blood ; 137(17): 2326-2336, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33545713

RESUMEN

Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by mutations in forkhead box P3 (FOXP3), which lead to the loss of function of regulatory T cells (Tregs) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide (Cy) conditioning and interleukin-2 (IL-2) treatment. This model highlighted the possibility of rescuing scurfy disease after the latter's onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and, as a reporter, a truncated form of the low-affinity nerve growth factor receptor (ΔLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Linfocitos T CD4-Positivos/inmunología , Ciclofosfamida/farmacología , Factores de Transcripción Forkhead/genética , Enfermedades Genéticas Ligadas al Cromosoma X/prevención & control , Interleucina-2/farmacología , Linfocitos T Reguladores/inmunología , Animales , Antineoplásicos/farmacología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/inmunología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/efectos de los fármacos
10.
Haematologica ; 108(11): 3095-3109, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199130

RESUMEN

Diamond-Blackfan anemia is a rare genetic bone marrow failure disorder which is usually caused by mutations in ribosomal protein genes. In the present study, we generated a traceable RPS19-deficient cell model using CRISPR-Cas9 and homology-directed repair to investigate the therapeutic effects of a clinically applicable lentiviral vector at single-cell resolution. We developed a gentle nanostraw delivery platform to edit the RPS19 gene in primary human cord bloodderived CD34+ hematopoietic stem and progenitor cells. The edited cells showed expected impaired erythroid differentiation phenotype, and a specific erythroid progenitor with abnormal cell cycle status accompanied by enrichment of TNFα/NF-κB and p53 signaling pathways was identified by single-cell RNA sequencing analysis. The therapeutic vector could rescue the abnormal erythropoiesis by activating cell cycle-related signaling pathways and promoted red blood cell production. Overall, these results establish nanostraws as a gentle option for CRISPR-Cas9- based gene editing in sensitive primary hematopoietic stem and progenitor cells, and provide support for future clinical investigations of the lentiviral gene therapy strategy.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/metabolismo , Proteínas Ribosómicas/genética , Diferenciación Celular , Eritropoyesis , Células Madre/metabolismo , Antígenos CD34
11.
Circulation ; 144(15): 1227-1240, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34372689

RESUMEN

BACKGROUND: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete MYDGF (myeloid-derived growth factor) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. METHODS: We defined the cellular sources and function of MYDGF in wild-type (WT), Mydgf-deficient (Mydgf-/-), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. RESULTS: MYDGF protein abundance increased in the left ventricular myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf-/- mice had no apparent phenotype at baseline, they developed more severe left ventricular hypertrophy and contractile dysfunction during pressure overload than WT mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein-coupled receptor agonist-induced hypertrophy and augmented SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression in cultured neonatal rat ventricular cardiomyocytes by enhancing PIM1 (Pim-1 proto-oncogene, serine/threonine kinase) expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf-/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca2+ cycling and sarcomere function compared with cardiomyocytes from pressure-overloaded WT mice. Transplanting Mydgf-/- mice with WT bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf-/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded WT mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated left ventricular hypertrophy and dysfunction, and improved survival. CONCLUSIONS: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/fisiología , Insuficiencia Cardíaca/terapia , Interleucinas/uso terapéutico , Miocitos Cardíacos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Interleucinas/farmacología , Ratones
12.
Haematologica ; 107(2): 446-456, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440921

RESUMEN

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure disorder in which pure red blood cell aplasia is associated with physical malformations and a predisposition to cancer. Twentyfive percent of patients with DBA have mutations in a gene encoding ribosomal protein S19 (RPS19). Our previous proof-of-concept studies demonstrated that DBA phenotype could be successfully treated using lentiviral vectors in Rps19-deficient DBA mice. In our present study, we developed a clinically applicable single gene, self-inactivating lentiviral vector, containing the human RPS19 cDNA driven by the human elongation factor 1a short promoter, which can be used for clinical gene therapy development for RPS19-deficient DBA. We examined the efficacy and safety of the vector in a Rps19-deficient DBA mouse model and in human primary RPS19-deficient CD34+ cord blood cells. We observed that transduced Rps19-deficient bone marrow cells could reconstitute mice long-term and rescue the bone marrow failure and severe anemia observed in Rps19-deficient mice, with a low risk of mutagenesis and a highly polyclonal insertion site pattern. More importantly, the vector can also rescue impaired erythroid differentiation in human primary RPS19-deficient CD34+ cord blood hematopoietic stem cells. Collectively, our results demonstrate the efficacy and safety of using a clinically applicable lentiviral vector for the successful treatment of Rps19-deficient DBA in a mouse model and in human primary CD34+ cord blood cells. These findings show that this vector can be used to develop clinical gene therapy for RPS19-deficient DBA patients.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/terapia , Animales , Sangre Fetal/metabolismo , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Mutación , ARN Interferente Pequeño/genética , Proteínas Ribosómicas/genética
13.
Mol Ther ; 29(8): 2535-2553, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33831558

RESUMEN

Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.


Asunto(s)
Células Clonales/citología , Secuenciación del Exoma/métodos , Células Madre Pluripotentes Inducidas/citología , Mutación , Neoplasias/genética , Anciano , Ciclo Celular , Muerte Celular , Diferenciación Celular , Línea Celular , Células Cultivadas , Reprogramación Celular , Células Clonales/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas/química , Neoplasias/patología
14.
Mol Ther ; 29(12): 3383-3397, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174440

RESUMEN

Hematopoietic stem cell gene therapy is emerging as a promising therapeutic strategy for many diseases of the blood and immune system. However, several individuals who underwent gene therapy in different trials developed hematological malignancies caused by insertional mutagenesis. Preclinical assessment of vector safety remains challenging because there are few reliable assays to screen for potential insertional mutagenesis effects in vitro. Here we demonstrate that genotoxic vectors induce a unique gene expression signature linked to stemness and oncogenesis in transduced murine hematopoietic stem and progenitor cells. Based on this finding, we developed the surrogate assay for genotoxicity assessment (SAGA). SAGA classifies integrating retroviral vectors using machine learning to detect this gene expression signature during the course of in vitro immortalization. On a set of benchmark vectors with known genotoxic potential, SAGA achieved an accuracy of 90.9%. SAGA is more robust and sensitive and faster than previous assays and reliably predicts a mutagenic risk for vectors that led to leukemic severe adverse events in clinical trials. Our work provides a fast and robust tool for preclinical risk assessment of gene therapy vectors, potentially paving the way for safer gene therapy trials.


Asunto(s)
Terapia Genética , Vectores Genéticos , Animales , Daño del ADN , Expresión Génica , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Células Madre Hematopoyéticas , Humanos , Aprendizaje Automático , Ratones , Mutagénesis Insercional
15.
Mol Ther ; 29(3): 1324-1334, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279724

RESUMEN

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Macrófagos/inmunología , Mutación , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Células Epiteliales/microbiología , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología
16.
Cell Mol Life Sci ; 78(9): 4143-4160, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33559689

RESUMEN

In vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal-to generate therapeutically applicable PSC-derived HSCs in vitro.


Asunto(s)
Endotelio/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Endotelio/citología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo
17.
Genes Dev ; 28(8): 858-74, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24736844

RESUMEN

Although regulation of stem cell homeostasis by microRNAs (miRNAs) is well studied, it is unclear how individual miRNAs genomically encoded within an organized polycistron can interact to induce an integrated phenotype. miR-99a/100, let-7, and miR-125b paralogs are encoded in two tricistrons on human chromosomes 11 and 21. They are highly expressed in hematopoietic stem cells (HSCs) and acute megakaryoblastic leukemia (AMKL), an aggressive form of leukemia with poor prognosis. Here, we show that miR-99a/100∼125b tricistrons are transcribed as a polycistronic message transactivated by the homeobox transcription factor HOXA10. Integrative analysis of global gene expression profiling, miRNA target prediction, and pathway architecture revealed that miR-99a/100, let-7, and miR-125b functionally converge at the combinatorial block of the transforming growth factor ß (TGFß) pathway by targeting four receptor subunits and two SMAD signaling transducers. In addition, down-regulation of tumor suppressor genes adenomatous polyposis coli (APC)/APC2 stabilizes active ß-catenin and enhances Wnt signaling. By switching the balance between Wnt and TGFß signaling, the concerted action of these tricistronic miRNAs promoted sustained expansion of murine and human HSCs in vitro or in vivo while favoring megakaryocytic differentiation. Hence, our study explains the high phylogenetic conservation of the miR-99a/100∼125b tricistrons controlling stem cell homeostasis, the deregulation of which contributes to the development of AMKL.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , MicroARNs , Transducción de Señal , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Animales , Apoptosis/genética , Regulación hacia Abajo , Eritropoyesis/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes APC/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Trombopoyesis/genética , Proteínas Wnt/genética
18.
Gene Ther ; 28(9): 494-512, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33753908

RESUMEN

Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Retroviridae , Terapia Genética , Vectores Genéticos/genética , Alemania , Humanos , Retroviridae/genética
19.
Gene Ther ; 28(9): 477-493, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34276045

RESUMEN

Inherited deficiency of the antiprotease alpha-1 antitrypsin (AAT) is associated with liver failure and early-onset emphysema. In mice, in vivo lentiviral transduction of alveolar macrophages (AMs) has been described to yield protective pulmonary AAT levels and ameliorate emphysema development. We here investigated the pulmonary transplantation of macrophages (PMT) transgenic for AAT as a potential therapy for AAT deficiency-associated lung pathology. Employing third-generation SIN-lentiviral vectors expressing the human AAT cDNA from the CAG or Cbx-EF1α promoter, we obtained high-level AAT secretion in a murine AM cell line as well as murine bone marrow-derived macrophages differentiated in vitro (AAT MΦ). Secreted AAT demonstrated a physiologic glycosylation pattern as well as elastase-inhibitory and anti-apoptotic properties. AAT MΦ preserved normal morphology, surface phenotype, and functionality. Furthermore, in vitro generated murine AAT MΦ successfully engrafted in AM-deficient Csf2rb-/- mice and converted into a CD11c+/Siglec-F+ AM phenotype as detected in bronchoalveolar lavage fluid and homogenized lung tissue 2 months after PMT. Moreover, human AAT was detected in the lung epithelial lining fluid of transplanted animals. Efficient AAT expression and secretion were also demonstrated for human AAT MΦ, confirming the applicability of our vectors in human cells.


Asunto(s)
Enfisema Pulmonar , Deficiencia de alfa 1-Antitripsina , Animales , Animales Modificados Genéticamente , Humanos , Pulmón , Macrófagos , Ratones , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/terapia
20.
J Hepatol ; 75(6): 1420-1433, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453962

RESUMEN

BACKGROUND & AIMS: Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS: We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS: Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION: Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY: Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.


Asunto(s)
Factor Nuclear 4 del Hepatocito/farmacología , Cirrosis Hepática/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Factor Nuclear 4 del Hepatocito/uso terapéutico , Ratones , ARN Mensajero/farmacología , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA