RESUMEN
Rationale: Galectin-3 (Gal-3) drives fibrosis during chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Effective pharmacological therapies available for ALI are limited; identifying novel concepts in treatment is essential. GB0139 is a Gal-3 inhibitor currently under clinical investigation for the treatment of idiopathic pulmonary fibrosis. We investigate the role of Gal-3 in ALI and evaluate whether its inhibition with GB0139 offers a protective role. The effect of GB0139 on ALI was explored in vivo and in vitro. Methods: The pharmacokinetic profile of intra-tracheal (i.t.) GB0139 was investigated in C57BL/6 mice to support the daily dosing regimen. GB0139 (1-30 µg) was then assessed following acute i.t. lipopolysaccharide (LPS) and bleomycin administration. Histology, broncho-alveolar lavage fluid (BALf) analysis, and flow cytometric analysis of lung digests and BALf were performed. The impact of GB0139 on cell activation and apoptosis was determined in vitro using neutrophils and THP-1, A549 and Jurkat E6 cell lines. Results: GB0139 decreased inflammation severity via a reduction in neutrophil and macrophage recruitment and neutrophil activation. GB0139 reduced LPS-mediated increases in interleukin (IL)-6, tumor necrosis factor alpha (TNFα) and macrophage inflammatory protein-1-alpha. In vitro, GB0139 inhibited Gal-3-induced neutrophil activation, monocyte IL-8 secretion, T cell apoptosis and the upregulation of pro-inflammatory genes encoding for IL-8, TNFα, IL-6 in alveolar epithelial cells in response to mechanical stretch. Conclusion: These data indicate that Gal-3 adopts a pro-inflammatory role following the early stages of lung injury and supports the development of GB0139, as a potential treatment approach in ALI.
RESUMEN
FSH is a key component in assisted reproductive technologies. Because of rapid clearance of the hormone, patients have to be treated with daily injections. To address this problem, a long-acting FSH mutein was created by introduction of additional N-linked glycosylation into the molecule. New glycosylation sites were introduced by two different approaches: structure-aided, site-directed introduction of sites within the FSH molecule and addition of N-terminal extensions. A mutein with the extension sequence ANITVNITV at the N terminus of the alpha-chain (FSH1208) was efficiently glycosylated at both new sites. This resulted in a molecule with increased size and charge, factors known to reduce renal clearance of proteins. FSH1208 was found to have a 3- to 4-fold increased serum half-life, compared with wild-type recombinant FSH. Furthermore, in spite of a lower in vitro activity, FSH1208 had a markedly increased in vivo potency, as shown by increased ability to augment the ovarian weight and stimulate the serum estradiol levels in rats. These characteristics make FSH1208 a possible candidate for improved infertility treatment.