RESUMEN
The future of the COVID pandemic and its public health and societal impact will be determined by the profile and spread of emerging variants and the timely identification and response to them. Wastewater surveillance of SARS-CoV-2 has been widely adopted in many countries across the globe and has played an important role in tracking infection levels and providing useful epidemiological information that cannot be adequately captured by clinical testing alone. However, novel variants can emerge rapidly, spread globally, and markedly alter the trajectory of the pandemic, as exemplified by the Delta and Omicron variants. Most mutations linked to the emergence of new SARS-CoV-2 variants are found within variable regions of the SARS-CoV-2 Spike protein. We have developed a duplex hemi-nested PCR method that, coupled with short amplicon sequencing, allows simultaneous typing of two of the most highly variable and informative regions of the Spike gene: the N-terminal domain and the receptor binding motif. Using this method in an operationalized public health program, we identified the first known incursion of Omicron BA.1 into Victoria, Australia and demonstrated how sensitive amplicon sequencing methods can be combined with wastewater surveillance as a relatively low-cost solution for early warning of variant incursion and spread.IMPORTANCEThis study offers a rapid, cost-effective, and sensitive approach for monitoring SARS-CoV-2 variants in wastewater. The method's flexibility permits timely modifications, enabling the integration of emerging variants and adaptations to evolving SARS-CoV-2 genetics. Of particular significance for low- and middle-income regions with limited surveillance capabilities, this technique can potentially be utilized to study a range of pathogens or viruses that possess diverse genetic sequences, similar to influenza.
Asunto(s)
COVID-19 , Secuenciación de Nucleótidos de Alto Rendimiento , SARS-CoV-2 , Aguas Residuales , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Aguas Residuales/virología , COVID-19/epidemiología , COVID-19/virología , Humanos , Victoria/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Glicoproteína de la Espiga del Coronavirus/genética , Monitoreo Epidemiológico Basado en Aguas ResidualesRESUMEN
The shedding of pathogens by infected humans enables the use of sewage monitoring to conduct wastewater-based epidemiology (WBE). Although most WBE studies use data from large sewage treatment plants, timely data from smaller catchments are needed for targeted public health action. Traditional sampling methods, like autosamplers or grab sampling, are not conducive to quick ad hoc deployments and high-resolution monitoring at these smaller scales. This study develops and validates a cheap and easily deployable passive sampler unit, made from readily available consumables, with relevance to the COVID-19 pandemic but with broader use for WBE. We provide the first evidence that passive samplers can be used to detect SARS-CoV-2 in wastewater from populations with low prevalence of active COVID-19 infections (0.034 to 0.34 per 10,000), demonstrating their ability for early detection of infections at three different scales (lot, suburb, and city). A side by side evaluation of passive samplers (n = 245) and traditionally collected wastewater samples (n = 183) verified that the passive samplers were sensitive at detecting SARS-CoV-2 in wastewater. On all 33 days where we directly compared traditional and passive sampling techniques, at least one passive sampler was positive when the average SARS-CoV-2 concentration in the wastewater equaled or exceeded the quantification limit of 1.8 gene copies per mL (n = 7). Moreover, on 13 occasions where wastewater SARS-CoV-2 concentrations were less than 1.8 gene copies per mL, one or more passive samplers were positive. Finally, there was a statistically significant (p < 0.001) positive relationship between the concentrations of SARS-CoV-2 in wastewater and the levels found on the passive samplers, indicating that with further evaluation, these devices could yield semi-quantitative results in the future. Passive samplers have the potential for wide use in WBE with attractive feasibility attributes of cost, ease of deployment at small-scale locations, and continuous sampling of the wastewater. Further research will focus on the optimization of laboratory methods including elution and extraction and continued parallel deployment and evaluations in a variety of settings to inform optimal use in wastewater surveillance.
Asunto(s)
COVID-19 , Aguas Residuales , Ciudades , Humanos , Pandemias , SARS-CoV-2RESUMEN
Enumeration of Campylobacter from environmental waters can be difficult due to its low concentrations, which can still pose a significant health risk. Spectrophotometry is an approach commonly used for fast detection of water-borne pollutants in water samples, but it has not been used for pathogen detection, which is commonly done through a laborious and time-consuming culture or qPCR Most Probable Number enumeration methods (i.e., MPN-PCR approaches). In this study, we proposed a new method, MPN-Spectro-ML, that can provide rapid evidence of Campylobacter detection and, hence, water concentrations. After an initial incubation, the samples were analysed using a spectrophotometer, and the spectrum data were used to train three machine learning (ML) models (i.e., supported vector machine - SVM, logistic regression-LR, and random forest-RF). The trained models were used to predict the presence of Campylobacter in the enriched water samples and estimate the most probable number (MPN). Over 100 stormwater, river, and creek samples (including both fresh and brackish water) from rural and urban catchments were collected to test the accuracy of the MPN-Spectro-ML method under various scenarios and compared to a previously standardised MPN-PCR method. Differences in the spectrum were found between positive and negative control samples, with two distinctive absorbance peaks between 540-542nm and 575-576nm for positive samples. Further, the three ML models had similar performance irrespective of the scenario tested with average prediction accuracy (ACC) and false negative rates at 0.763 and 13.8%, respectively. However, the predicted MPN of Campylobacter from the new method varied from the traditional MPN-PCR method, with a maximum Nash-Sutcliffe coefficient of 0.44 for the urban catchment dataset. Nevertheless, the MPN values based on these two methods were still comparable, considering the confidence intervals and large uncertainties associated with MPN estimation. The study reveals the potential of this novel approach for providing interim evidence of the presence and levels of Campylobacter within environmental water bodies. This, in turn, decreases the time from risk detection to management for the benefit of public health.
Asunto(s)
Campylobacter , Aprendizaje Automático , Campylobacter/aislamiento & purificación , Campylobacter/genética , Microbiología del Agua , Espectrofotometría/métodos , Ríos/microbiología , Ríos/químicaRESUMEN
BACKGROUND: Multiple bacteria, viruses, protists, and helminths cause enteric infections that greatly impact human health and wellbeing. These enteropathogens are transmited via several pathways through human, animal, and environmental reservoirs. Individual qPCR assays have been extensively used to detect enteropathogens within these types of samples, whereas the TaqMan array card (TAC), which allows simultaneous detection of multiple enteropathogens, has only previously been validated in human clinical samples. METHODS: In this methodological comparison study, we compared the performance of a custom 48-singleplex TAC relative to standard qPCR. We established the sensitivity and specificity of each method for the detection of eight enteric targets, by using spiked samples with varying levels of PCR inhibition. We then tested the prevalence and abundance of pathogens in wastewater from Melbourne (Australia), and human, animal, and environmental samples from informal settlements in Suva, Fiji using both TAC and qPCR. FINDINGS: Both methods exhibited similarly h specificity (TAC 100%, qPCR 94%), sensitivity (TAC 92%, qPCR 100%), and quantitation accuracy (TAC 91%, qPCR 99%) in non-inhibited sample matrices with spiked gene fragments. PCR inhibitors substantially affected detection via TAC, though this issue was alleviated by ten-fold sample dilution. Among samples from informal settlements, the two techniques performed similarly for detection (89% agreement) and quantitation (R2 0·82) for the eight enteropathogen targets. The TAC additionally included 38 other enteric targets, enabling detection of diverse faecal pathogens and extensive environmental contamination that would be prohibitively labour intensive to assay by standard qPCR. INTERPRETATION: The two techniques produced similar results across diverse sample types, with qPCR prioritising greater sensitivity and quantitation accuracy, and TAC trading small reductions in these for a cost-effective larger enteropathogen panel enabling a greater number of enteric pathogens to be analysed concurrently, which is beneficial given the abundance and variety of enteric pathogens in environments such as urban informal settlements. The ability to monitor multiple enteric pathogens across diverse reservoirs could allow better resolution of pathogen exposure pathways, and the design and monitoring of interventions to reduce pathogen load. FUNDING: Wellcome Trust Our Planet, Our Health programme.
Asunto(s)
Bacterias , Australia , Bacterias/genética , Fiji , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: The intense interactions between people, animals and environmental systems in urban informal settlements compromise human and environmental health. Inadequate water and sanitation services, compounded by exposure to flooding and climate change risks, expose inhabitants to environmental contamination causing poor health and wellbeing and degrading ecosystems. However, the exact nature and full scope of risks and exposure pathways between human health and the environment in informal settlements are uncertain. Existing models are limited to microbiological linkages related to faecal-oral exposures at the individual level, and do not account for a broader range of human-environmental variables and interactions that affect population health and wellbeing. METHODS: We undertook a 12-month health and environmental assessment in 12 flood-prone informal settlements in Makassar, Indonesia. We obtained caregiver-reported health data, anthropometric measurements, stool and blood samples from children < 5 years, and health and wellbeing data for children 5-14 years and adult respondents. We collected environmental data including temperature, mosquito and rat species abundance, and water and sediment samples. Demographic, built environment and household asset data were also collected. We combined our data with existing literature to generate a novel planetary health model of health and environment in informal settlements. RESULTS: Across the 12 settlements, 593 households and 2764 participants were enrolled. Two-thirds (64·1%) of all houses (26·3-82·7% per settlement) had formal land tenure documentation. Cough, fever and diarrhoea in the week prior to the survey were reported among an average of 34.3%, 26.9% and 9.7% of children aged < 5 years, respectively; although proportions varied over time, prevalence among these youngest children was consistently higher than among children 5-14 years or adult respondents. Among children < 5 years, 44·3% experienced stunting, 41·1% underweight, 12.4% wasting, and 26.5% were anaemic. There was self- or carer-reported poor mental health among 16.6% of children aged 5-14 years and 13.9% of adult respondents. Rates of potential risky exposures from swimming in waterways, eating uncooked produce, and eating soil or dirt were high, as were exposures to flooding and livestock. Just over one third of households (35.3%) had access to municipal water, and contamination of well water with E. coli and nitrogen species was common. Most (79·5%) houses had an in-house toilet, but no houses were connected to a piped sewer network or safe, properly constructed septic tank. Median monthly settlement outdoor temperatures ranged from 26·2 °C to 29.3 °C, and were on average, 1·1 °C warmer inside houses than outside. Mosquito density varied over time, with Culex quinquefasciatus accounting for 94·7% of species. Framed by a planetary health lens, our model includes four thematic domains: (1) the physical/built environment; (2) the ecological environment; (3) human health; and (4) socio-economic wellbeing, and is structured at individual, household, settlement, and city/beyond spatial scales. CONCLUSIONS: Our planetary health model includes key risk factors and faecal-oral exposure pathways but extends beyond conventional microbiological faecal-oral enteropathogen exposure pathways to comprehensively account for a wider range of variables affecting health in urban informal settlements. It includes broader ecological interconnections and planetary health-related variables at the household, settlement and city levels. It proposes a composite framework of markers to assess water and sanitation challenges and flood risks in urban informal settlements for optimal design and monitoring of interventions.
Asunto(s)
Ecosistema , Escherichia coli , Adulto , Animales , Humanos , Indonesia , Ratas , Saneamiento , Factores Socioeconómicos , Población UrbanaRESUMEN
Estuarine bank sediments have the potential to support the survival and growth of fecal indicator organisms, including Escherichia coli. However, survival of fecal pathogens in estuarine sediments is not well researched and therefore remains a significant knowledge gap regarding public health risks in estuaries. In this study, simultaneous survival of Escherichia coli and a fecal pathogen, Salmonella enterica serovar Typhimurium, was studied for 21 days in estuarine bank sediment microcosms. Observed growth patterns for both organisms were comparable under four simulated scenarios; for continuous-desiccation, extended-desiccation, periodic-inundation, and continuous-inundation systems, logarithmic decay coefficients were 1.54/day, 1.51/day, 0.14/day, and 0.20/day, respectively, for E. coli, and 1.72/day, 1.64/day, 0.21/day, and 0.24/day for S. Typhimurium. Re-wetting of continuous-desiccated systems resulted in potential re-growth, suggesting survival under moisture-limited conditions. Key findings from this study include: (i) Bank sediments can potentially support human pathogens (S. Typhimurium), (ii) inundation levels influence the survival of fecal bacteria in estuarine bank sediments, and (iii) comparable survival rates of S. Typhimurium and E. coli implies the latter could be a reliable fecal indicator in urban estuaries. The results from this study will help select suitable monitoring and management strategies for safer recreational activities in urban estuaries.
Asunto(s)
Escherichia coli/aislamiento & purificación , Sedimentos Geológicos/microbiología , Salmonella enterica/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Serogrupo , Estuarios , Heces/microbiología , Humanos , Victoria , Enfermedades Transmitidas por el AguaRESUMEN
Urban estuaries throughout the world typically contain elevated levels of faecal contamination, the extent of which is generally assessed using faecal indicator organisms (FIO) such as Escherichia coli. This study assesses whether the bacterial FIO, E. coli is a suitable surrogate for Campylobacter spp., in estuaries. The presence and survival dynamics of culturable E. coli and Campylobacter spp. are compared in the water column, bank sediments and bed sediments of the Yarra River estuary (located in Melbourne, Australia). The presence of E. coli did not necessarily indicate detectable levels of Campylobacter spp. in the water column, bed and bank sediments, but the inactivation rates of the two bacteria were similar in the water column. A key finding of the study is that E. coli and Campylobacter spp. can survive for up to 14days in the water column and up to 21days in the bed and bank sediments of the estuary. Preliminary data presented in this study also suggests that the inactivation rates of the two bacteria may be similar in bed and bank sediments. This undermines previous hypotheses that Campylobacter spp. cannot survive outside of its host and indicates that public health risks can persist in aquatic systems for up to three weeks after the initial contamination event.
Asunto(s)
Campylobacter/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Ríos/microbiología , Ciudades , Estuarios , VictoriaRESUMEN
Faecal contamination of recreational waters is an increasing global health concern. Tracing the source of the contaminant is a vital step towards mitigation and disease prevention. Total 16S rRNA amplicon data for a specific environment (faeces, water, soil) and computational tools such as the Markov-Chain Monte Carlo based SourceTracker can be applied to microbial source tracking (MST) and attribution studies. The current study applied artificial and in-laboratory derived bacterial communities to define the potential and limitations associated with the use of SourceTracker, prior to its application for faecal source tracking at three recreational beaches near Port Phillip Bay (Victoria, Australia). The results demonstrated that at minimum multiple model runs of the SourceTracker modelling tool (i.e. technical replicates) were required to identify potential false positive predictions. The calculation of relative standard deviations (RSDs) for each attributed source improved overall predictive confidence in the results. In general, default parameter settings provided high sensitivity, specificity, accuracy and precision. Application of SourceTracker to recreational beach samples identified treated effluent as major source of human-derived faecal contamination, present in 69% of samples. Site-specific sources, such as raw sewage, stormwater and bacterial populations associated with the Yarra River estuary were also identified. Rainfall and associated sand resuspension at each location correlated with observed human faecal indicators. The results of the optimised SourceTracker analysis suggests that local sources of contamination have the greatest effect on recreational coastal water quality.
Asunto(s)
Biología Computacional/métodos , Heces/microbiología , Medición de Riesgo/métodos , Microbiología del Suelo , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Playas , Bahías/microbiología , Monitoreo del Ambiente/métodos , Estuarios , Geografía , Humanos , ARN Ribosómico 16S/genética , Recreación , Reproducibilidad de los Resultados , Factores de Riesgo , Ríos/microbiología , Aguas del Alcantarillado/microbiología , VictoriaRESUMEN
Recreational water quality is commonly monitored by means of culture based faecal indicator organism (FIOs) assays. However, these methods are costly and time-consuming; a serious disadvantage when combined with issues such as non-specificity and user bias. New culture and molecular methods have been developed to counter these drawbacks. This study compared industry-standard IDEXX methods (Colilert and Enterolert) with three alternative approaches: 1) TECTA™ system for E. coli and enterococci; 2) US EPA's 1611 method (qPCR based enterococci enumeration); and 3) Next Generation Sequencing (NGS). Water samples (233) were collected from riverine, estuarine and marine environments over the 2014-2015 summer period and analysed by the four methods. The results demonstrated that E. coli and coliform densities, inferred by the IDEXX system, correlated strongly with the TECTA™ system. The TECTA™ system had further advantages in faster turnaround times (~12 hrs from sample receipt to result compared to 24 hrs); no staff time required for interpretation and less user bias (results are automatically calculated, compared to subjective colorimetric decisions). The US EPA Method 1611 qPCR method also showed significant correlation with the IDEXX enterococci method; but had significant disadvantages such as highly technical analysis and higher operational costs (330% of IDEXX). The NGS method demonstrated statistically significant correlations between IDEXX and the proportions of sequences belonging to FIOs, Enterobacteriaceae, and Enterococcaceae. While costs (3,000% of IDEXX) and analysis time (300% of IDEXX) were found to be significant drawbacks of NGS, rapid technological advances in this field will soon see it widely adopted.
Asunto(s)
Técnicas Bacteriológicas/métodos , Monitoreo del Ambiente/métodos , Agua Dulce/microbiología , Carga Bacteriana , Técnicas Bacteriológicas/economía , Enterococcus/genética , Enterococcus/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Sensibilidad y EspecificidadRESUMEN
Campylobacter is the leading agent of diarrheal disease worldwide. This study evaluates a novel culture-PCR hybrid (MPN-PCR) assay for the rapid enumeration of Campylobacter spp. from estuarine and wastewater systems. To first evaluate the current, culture-based, Australian standard, an inter-laboratory study was conducted on 69 subsampled water samples. The proposed Most-Probable Number (MPN)-PCR method was then evaluated, by analysing 147 estuarine samples collected over a 2 year period. Data for 14 different biological, hydrological and climatic parameters were also collated to identify pathogen-environment relationships and assess the potential for method specific bias. The results demonstrated that the intra-laboratory performance of the MPN-PCR was superior to that of AS/NZS (σ = 0.7912, P < 0.001; κ = 0.701, P < 0.001) with an overall diagnostic accuracy of ~94%. Furthermore, the analysis of both MPN-PCR and AS/NZS identified the potential for the introduction of method specific bias during assessment of the effects of environmental parameters on Campylobacter spp. numbers.