Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(17): e2400052, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896836

RESUMEN

The extracellular matrix (ECM) is composed of collagens, ECM glycoproteins, and proteoglycans (also named core matrisome proteins) that are critical for tissue structure and function, and matrisome-associated proteins that balance the production and degradation of the ECM proteins. The identification and quantification of core matrisome proteins using mass spectrometry is often hindered by their low abundance and their propensity to form macromolecular insoluble structures. In this study, we aimed to investigate the added value of decellularization in identifying and quantifying core matrisome proteins in mouse kidney. The decellularization strategy combined freeze-thaw cycles and sodium dodecyl sulphate treatment. We found that decellularization preserved 95% of the core matrisome proteins detected in non-decellularized kidney and revealed few additional ones. Decellularization also led to an average of 59 times enrichment of 96% of the core matrisome proteins as the result of the successful removal of cellular and matrisome-associated proteins. However, the enrichment varied greatly among core matrisome proteins, resulting in a misrepresentation of the native ECM composition in decellularized kidney. This should be brought to the attention of the matrisome research community, as it highlights the need for caution when interpreting proteomic data obtained from a decellularized organ.


Asunto(s)
Proteínas de la Matriz Extracelular , Matriz Extracelular , Riñón , Proteoma , Proteómica , Animales , Ratones , Riñón/metabolismo , Riñón/citología , Riñón/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/análisis , Proteínas de la Matriz Extracelular/metabolismo , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas/métodos
2.
Hum Mol Genet ; 31(12): 1921-1945, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34919690

RESUMEN

Renal tract defects and autism spectrum disorder (ASD) deficits represent the phenotypic core of the 19q12 deletion syndrome caused by the loss of one copy of the TSHZ3 gene. Although a proportion of Tshz3 heterozygous (Tshz3+/lacZ) mice display ureteral defects, no kidney defects have been reported in these mice. The purpose of this study was to characterize the expression of Tshz3 in adult kidney as well as the renal consequences of embryonic haploinsufficiency of Tshz3 by analyzing the morphology and function of Tshz3 heterozygous adult kidney. Here, we described Tshz3 expression in the smooth muscle and stromal cells lining the renal pelvis, the papilla and glomerular endothelial cells (GEnCs) of the adult kidney as well as in the proximal nephron tubules in neonatal mice. Histological analysis showed that Tshz3+/lacZ adult kidney had an average of 29% fewer glomeruli than wild-type kidney. Transmission electron microscopy of Tshz3+/lacZ glomeruli revealed a reduced thickness of the glomerular basement membrane and a larger foot process width. Compared to wild type, Tshz3+/lacZ mice showed lower blood urea, phosphates, magnesium and potassium at 2 months of age. At the molecular level, transcriptome analysis identified differentially expressed genes related to inflammatory processes in Tshz3+/lacZ compare to wild-type (control) adult kidneys. Lastly, analysis of the urinary peptidome revealed 33 peptides associated with Tshz3+/lacZ adult mice. These results provide the first evidence that in the mouse Tshz3 haploinsufficiency leads to cellular, molecular and functional abnormalities in the adult mouse kidney.


Asunto(s)
Enfermedades Renales , Factores de Transcripción/metabolismo , Uréter , Animales , Trastorno del Espectro Autista/genética , Células Endoteliales/patología , Haploinsuficiencia/genética , Riñón/metabolismo , Enfermedades Renales/metabolismo , Ratones , Factores de Transcripción/genética
3.
Nephrol Dial Transplant ; 39(3): 453-462, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37697716

RESUMEN

BACKGROUND AND HYPOTHESIS: Specific urinary peptides hold information on disease pathophysiology, which, in combination with artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are generally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and spatially visualize multiple CKD aetiologies. METHODS: The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropathy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art single-aetiology CKD urinary peptide models. RESULTS: In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to form distinct clusters in the 3D space based on their disease state. CONCLUSION: Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Although adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. Additional studies are warranted to further validate the pipeline's clinical potential as well as to expand it to other CKD aetiologies and also other diseases.


Asunto(s)
Glomerulonefritis por IGA , Insuficiencia Renal Crónica , Vasculitis , Humanos , Biomarcadores , Diagnóstico Diferencial , Inteligencia Artificial , Glomerulonefritis por IGA/complicaciones , Biopsia Líquida/efectos adversos , Péptidos , Proteómica
4.
Artículo en Inglés | MEDLINE | ID: mdl-38908913

RESUMEN

BACKGROUND AND HYPOTHESIS: Congenital anomalies of the kidney and the urinary tract (CAKUT), often discovered in utero, cover a wide spectrum of outcomes ranging from normal postnatal kidney function to fetal death. The current ultrasound workup does not allow for an accurate assessment of the outcome. The present study aimed to significantly improve the ultrasound-based prediction of postnatal kidney survival in CAKUT. METHODS: Histological analysis of kidneys of 15 CAKUT fetuses was performed to better standardize the ultrasound interpretation of dysplasia and cysts. Ultrasound images of 140 CAKUT fetuses with 2-year postnatal follow-up were annotated for amniotic fluid volume and kidney number, size, dysplasia and/or cysts using standardized ultrasound readout. Association of ultrasound features and clinical data (sex and age at diagnosis) with postnatal kidney function was studied using logistic regression. Amniotic fluid proteome associated to kidney dysplasia or cysts was characterized by mass spectrometry. RESULTS: Histologically, poor ultrasound corticomedullary differentiation was associated to dysplastic lesions and ultrasound hyperechogenicity was associated to the presence of microcysts. Of all ultrasound and clinical parameters, reduced amniotic volume, dysplasia and cysts were the best predictors of poor outcome (Odd ratio = 57 [95%CI: 11-481], 20 [3-225] and 7 [1-100], respectively). Their combination into an algorithm improved prediction of postnatal kidney function compared to amniotic volume alone (area under the ROC curve = 0.92 [0.86-0.98] in a 10-fold cross validation). Dysplasia and cysts were correlated (Cramer's V coefficient = 0.44, p<0.0001), but amniotic fluid proteome analysis revealed that they had distinct molecular origin (extracellular matrix and cell contacts versus cellular death, respectively), probably explaining the additivity of their predictive performances. CONCLUSION: Antenatal clinical advice for CAKUT pregnancies can be improved by a more standardized and combined interpretation of ultrasound data.

5.
Nephrol Dial Transplant ; 39(3): 496-509, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37697719

RESUMEN

BACKGROUND: The role of macrophages in the development of rhabdomyolysis-induced acute kidney injury (RM-AKI) has been established, but an in-depth understanding of the changes in the immune landscape could help to improve targeted strategies. Whereas senescence is usually associated with chronic kidney processes, we also wished to explore whether senescence could also occur in AKI and whether senolytics could act on immune cells. METHODS: Single-cell RNA sequencing was used in the murine glycerol-induced RM-AKI model to dissect the transcriptomic characteristics of CD45+ live cells sorted from kidneys 2 days after injury. Public datasets from murine AKI models were reanalysed to explore cellular senescence signature in tubular epithelial cells (TECs). A combination of senolytics (dasatinib and quercetin, DQ) was administered to mice exposed or not to RM-AKI. RESULTS: Unsupervised clustering of nearly 17 000 single-cell transcriptomes identified seven known immune cell clusters. Sub-clustering of the mononuclear phagocyte cells revealed nine distinct cell sub-populations differently modified with RM. One macrophage cluster was particularly interesting since it behaved as a critical node in a trajectory connecting one major histocompatibility complex class IIhigh (MHCIIhigh) cluster only present in Control to two MHCIIlow clusters only present in RM-AKI. This critical cluster expressed a senescence gene signature, that was very different from that of the TECs. Senolytic DQ treatment blocked the switch from a F4/80highCD11blow to F4/80lowCD11bhigh phenotype, which correlated with prolonged nephroprotection in RM-AKI. CONCLUSIONS: Single-cell RNA sequencing unmasked novel transitional macrophage subpopulation associated with RM-AKI characterized by the activation of cellular senescence processes. This work provides a proof-of-concept that senolytics nephroprotective effects may rely, at least in part, on subtle immune modulation.


Asunto(s)
Lesión Renal Aguda , Rabdomiólisis , Ratones , Animales , Senoterapéuticos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/complicaciones , Riñón , Rabdomiólisis/complicaciones , Rabdomiólisis/tratamiento farmacológico , Análisis de Secuencia de ARN
6.
J Transl Med ; 21(1): 663, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37741989

RESUMEN

BACKGROUND: There is evidence of pre-established vulnerability in individuals that increases the risk of their progression to severe disease or death, although the mechanisms causing this are still not fully understood. Previous research has demonstrated that a urinary peptide classifier (COV50) predicts disease progression and death from SARS-CoV-2 at an early stage, indicating that the outcome prediction may be partly due to vulnerabilities that are already present. The aim of this study is to examine the ability of COV50 to predict future non-COVID-19-related mortality, and evaluate whether the pre-established vulnerability can be generic and explained on a molecular level by urinary peptides. METHODS: Urinary proteomic data from 9193 patients (1719 patients sampled at intensive care unit (ICU) admission and 7474 patients with other diseases (non-ICU)) were extracted from the Human Urinary Proteome Database. The previously developed COV50 classifier, a urinary proteomics biomarker panel consisting of 50 peptides, was applied to all datasets. The association of COV50 scoring with mortality was evaluated. RESULTS: In the ICU group, an increase in the COV50 score of one unit resulted in a 20% higher relative risk of death [adjusted HR 1.2 (95% CI 1.17-1.24)]. The same increase in COV50 in non-ICU patients resulted in a higher relative risk of 61% [adjusted HR 1.61 (95% CI 1.47-1.76)], consistent with adjusted meta-analytic HR estimate of 1.55 [95% CI 1.39-1.73]. The most notable and significant changes associated with future fatal events were reductions of specific collagen fragments, most of collagen alpha I (I). CONCLUSION: The COV50 classifier is predictive of death in the absence of SARS-CoV-2 infection, suggesting that it detects pre-existing vulnerability. This prediction is mainly based on collagen fragments, possibly reflecting disturbances in the integrity of the extracellular matrix. These data may serve as a basis for proteomics-guided intervention aiming towards manipulating/ improving collagen turnover, thereby reducing the risk of death.


Asunto(s)
COVID-19 , Humanos , Proteómica , SARS-CoV-2 , Colágeno Tipo I , Péptidos
7.
FASEB J ; 35(11): e21931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653285

RESUMEN

Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1ß (HNF-1ß) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis. Characterizing the metabolic changes in PT cells with HNF-1ß deficiency may help to identify new targetable molecular hubs involved in HNF1B-related kidney phenotypes and AKI. Here, we combined 1 H-NMR-based metabolomic analysis in a murine PT cell line with CrispR/Cas9-induced Hnf1b invalidation (Hnf1b-/- ), clustering analysis, targeted metabolic assays, and datamining of published RNA-seq and ChIP-seq dataset to identify the role of HNF-1ß in metabolism. Hnf1b-/- cells grown in normoxic conditions display intracellular ATP depletion, increased cytosolic lactate concentration, increased lipid droplet content, failure to use pyruvate for energetic purposes, increased levels of tricarboxylic acid (TCA) cycle intermediates and oxidized glutathione, and a reduction of TCA cycle byproducts, all features consistent with mitochondrial dysfunction and an irreversible switch toward glycolysis. Unsupervised clustering analysis showed that Hnf1b-/- cells mimic a hypoxic signature and that they cannot furthermore increase glycolysis-dependent energetic supply during hypoxic challenge. Metabolome analysis also showed alteration of phospholipid biosynthesis in Hnf1b-/- cells leading to the identification of Chka, the gene coding for choline kinase α, as a new putative target of HNF-1ß. HNF-1ß shapes the energetic metabolism of PT cells and HNF1B deficiency in patients could lead to a hypoxia-like metabolic state precluding further adaptation to ATP depletion following AKI.


Asunto(s)
Células Epiteliales/metabolismo , Eliminación de Gen , Glucólisis/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Homeostasis/genética , Túbulos Renales Proximales/citología , Transducción de Señal/genética , Lesión Renal Aguda/metabolismo , Animales , Sistemas CRISPR-Cas , Hipoxia de la Célula/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Factor Nuclear 1-beta del Hepatocito/genética , Humanos , Metaboloma , Ratones , Transcriptoma
8.
J Pathol ; 254(5): 575-588, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33987838

RESUMEN

Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Líquido Amniótico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Anomalías Urogenitales/metabolismo , Reflujo Vesicoureteral/metabolismo , Animales , Femenino , Feto , Humanos , Masculino , Ratones , Proteoma , Proteómica , Pez Cebra
9.
Crit Care ; 26(1): 344, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345008

RESUMEN

BACKGROUND: The delayed diagnosis of acute kidney injury (AKI) episodes and the lack of specificity of current single AKI biomarkers hamper its management. Urinary peptidome analysis may help to identify early molecular changes in AKI and grasp its complexity to identify potential targetable molecular pathways. METHODS: In derivation and validation cohorts totalizing 1170 major cardiac bypass surgery patients and in an external cohort of 1569 intensive care unit (ICU) patients, a peptide-based score predictive of AKI (7-day KDIGO classification) was developed, validated, and compared to the reference biomarker urinary NGAL and NephroCheck and clinical scores. RESULTS: A set of 204 urinary peptides derived from 48 proteins related to hemolysis, inflammation, immune cells trafficking, innate immunity, and cell growth and survival was identified and validated for the early discrimination (< 4 h) of patients according to their risk to develop AKI (OR 6.13 [3.96-9.59], p < 0.001) outperforming reference biomarkers (urinary NGAL and [IGFBP7].[TIMP2] product) and clinical scores. In an external cohort of 1569 ICU patients, performances of the signature were similar (OR 5.92 [4.73-7.45], p < 0.001), and it was also associated with the in-hospital mortality (OR 2.62 [2.05-3.38], p < 0.001). CONCLUSIONS: An overarching AKI physiopathology-driven urinary peptide signature shows significant promise for identifying, at an early stage, patients who will progress to AKI and thus to develop tailored treatments for this frequent and life-threatening condition. Performance of the urine peptide signature is as high as or higher than that of single biomarkers but adds mechanistic information that may help to discriminate sub-phenotypes of AKI offering new therapeutic avenues.


Asunto(s)
Lesión Renal Aguda , Humanos , Lipocalina 2 , Valor Predictivo de las Pruebas , Lesión Renal Aguda/diagnóstico , Biomarcadores , Péptidos
10.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34250814

RESUMEN

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Asunto(s)
Adaptación Fisiológica , Sistema Cardiovascular/metabolismo , Estilo de Vida , Obesidad/metabolismo , Programas de Reducción de Peso , Adulto , Factores de Edad , Anciano , Composición Corporal , Humanos , Masculino , Persona de Mediana Edad
11.
Biochem Biophys Res Commun ; 533(4): 786-791, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32988586

RESUMEN

Congenital Anomalies of the Kidney and of the Urinary Tract (CAKUT) cover a broad range of disorders including abnormal kidney development caused by defective nephrogenesis. Here we explored the possible involvement of the low affinity p75 neurotrophin receptor (p75NTR) in CAKUT and nephrogenesis. In mouse, p75NTR was highly expressed in fetal kidney, located within cortical early nephrogenic bodies, and decreased rapidly after birth. In human control fetal kidney, p75NTR was also located within the early nephrogenic bodies as well as in the mature glomeruli, presumably in the mesangium. In CAKUT fetal kidneys, the kidney cortical structure and the localization of p75NTR were often disorganized, and quantification of p75NTR in amniotic fluid revealed a significant reduction in CAKUT compared to control. Finally, invalidation of p75NTR in zebrafish embryo with an antisense morpholino significantly altered pronephros development. Our results indicate that renal p75NTR is altered in CAKUT fetuses, and could participate to early nephrogenesis.


Asunto(s)
Riñón/anomalías , Riñón/embriología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Sistema Urinario/anomalías , Animales , Regulación hacia Abajo , Humanos , Riñón/metabolismo , Ratones , Pronefro , ARN Mensajero/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Pez Cebra/embriología
12.
Nephrol Dial Transplant ; 35(5): 827-836, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169874

RESUMEN

BACKGROUND: Although chronic kidney disease (CKD) and age are major risk factors for cardiovascular disease (CVD), little is known about the relative proportions of atheromatous and non-atheromatous CVD by age in CKD patients. METHODS: We used baseline data from the French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort of 3033 patients (65% men) with CKD Stages 3-4 to study crude and adjusted associations between age, the estimated glomerular filtration rate (eGFR), atheromatous CVD (coronary artery disease, peripheral artery disease and stroke) and non-atheromatous CVD (heart failure, cardiac arrhythmia and valvular heart disease). RESULTS: Mean age was 66.8 and mean Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) eGFR was 32.9 mL/min/1.73 m2. In the <65, (65-74), (75-84) and ≥85 year age groups, the prevalence was, respectively, 18.7, 35.5, 42.9 and 37.8% for atheromatous CVD, and 14.9, 28.4, 38.1 and 56.4% for non-atheromatous CVD. After adjusting for albuminuria, sex and CVD risk factors, the odds ratio (OR) [95% confidence interval (CI)] for (65-74), (75-84) and ≥85 age groups (compared with the <65 group) was, respectively, 1.99 (1.61-2.46), 2.89 (2.30-3.62), 2.72 (1.77-4.18) for atheromatous CVD and 2.07 (1.66-2.58), 3.15 (2.50-3.97), 7.04 (4.67-10.61) for non-atheromatous CVD. Compared with patients with an eGFR ≥30 mL/min/1.73 m2, those with an eGFR <30 mL/min/1.73 m2 had a higher OR for atheromatous CVD [1.21 (1.01-1.44)] and non-atheromatous CVD [1.16 (0.97-1.38)]. CONCLUSIONS: In this large cohort of CKD patients, both atheromatous and non-atheromatous CVD were highly prevalent and more frequent in older patients. In a given age group, the prevalence of atheromatous and non-atheromatous CVD was similar (except for a greater prevalence of non-atheromatous CVD after 85).


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Placa Aterosclerótica/fisiopatología , Insuficiencia Renal Crónica/complicaciones , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/etiología , Femenino , Francia/epidemiología , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
13.
Pediatr Nephrol ; 35(3): 469-475, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31701236

RESUMEN

BACKGROUND: Posterior urethral valves (PUVs) account for 17% of pediatric renal failure. The management of pregnancies involving fetuses with PUV is hampered by the fact that current clinical parameters obtained from fetal ultrasound and/or fetal urine biochemistry are insufficient to predict postnatal renal function. We previously have developed a fetal urine peptide signature (12PUV) that predicted with high precision postnatal renal failure at 2 years of age in fetuses with PUV. Here, we evaluated the accuracy of this signature to predict postnatal renal outcome in fetuses with PUV in an independent single-center study. METHODS: Thirty-three women carrying fetuses with suspected PUV were included. Twenty-five fetuses received vesicoamniotic shunts during pregnancy. PUV was confirmed postnatally in 23 patients. Of those 23 fetuses, 2 were lost in follow-up. Four and 3 patients died in the pre- and perinatal periods, respectively. Follow-up renal function at 6 months of age was obtained for the remaining 14 patients. The primary outcome was early renal failure, defined by an eGFR < 60 mL/min/1.73 m2 before 6 months of age or pre- or perinatal death. RESULTS: The peptide signature predicted postnatal renal outcome in postnatally confirmed PUV fetuses with an AUC of 0.94 (95%CI 0.74-1.0) and an accuracy of 90% (95%CI 78-100). The signature predicted postnatal renal outcome for the suspected PUV cases with an AUC of 0.89 (95%CI 0.72-0.97) and an accuracy of 84% (95%CI 71-97). CONCLUSIONS: This single-center study confirms the predictive power of the previously identified 12PUV fetal urinary peptide signature.


Asunto(s)
Enfermedades Fetales/orina , Pruebas de Función Renal/métodos , Péptidos/orina , Insuficiencia Renal/epidemiología , Uretra/anomalías , Obstrucción Uretral/orina , Anastomosis Quirúrgica/métodos , Estudios de Factibilidad , Femenino , Enfermedades Fetales/etiología , Enfermedades Fetales/cirugía , Terapias Fetales/métodos , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Valor Predictivo de las Pruebas , Embarazo , Diagnóstico Prenatal/métodos , Insuficiencia Renal/etiología , Medición de Riesgo/métodos , Obstrucción Uretral/etiología , Obstrucción Uretral/cirugía , Procedimientos Quirúrgicos Urológicos/métodos
16.
Nephrol Dial Transplant ; 34(2): 277-286, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635335

RESUMEN

Background: The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study was designed to investigate the determinants of prognosis and care of patients referred to nephrologists with moderate and advanced chronic kidney disease (CKD). We examined their baseline risk profile and experience. Methods: We collected bioclinical and patient-reported information from 3033 outpatients with CKD and estimated glomerular filtration rates (eGFRs) of 15-60 mL/min/1.73 m2 treated at 40 nationally representative public and private facilities. Results: The patients' median age was 69 (60-76) years, 65% were men, their mean eGFR was 33 mL/min/1.73 m2, 43% had diabetes, 24% had a history of acute kidney injury (AKI) and 57% had uncontrolled blood pressure (BP; >140/90 mmHg). Men had worse risk profiles than women and were more likely to be past or current smokers (73% versus 34%) and have cardiovascular disease (59% versus 42%), albuminuria >30 mg/mmol (or proteinuria > 50) (40% versus 30%) (all P < 0.001) and a higher median risk of end-stage renal disease within 5 years, predicted by the kidney failure risk equation {12% [interquartile range (IQR) 3-37%] versus 9% [3-31%], P = 0.008}. During the previous year, 60% of patients reported one-to-two nephrologist visits and four or more general practitioner visits; only 25% saw a dietician and 75% were prescribed five or more medications daily. Physical and mental quality of life (QoL) were poor, with scores <50/100. Conclusions: The CKD-REIN study highlights high-risk profiles of cohort members and identifies several priorities, including improving BP control and dietary counselling and increasing doctors' awareness of AKI, polypharmacy and QoL. Trial registration: ClinicalTrials.gov identifier: NCT03381950.


Asunto(s)
Fallo Renal Crónico/terapia , Calidad de Vida , Lesión Renal Aguda , Anciano , Anciano de 80 o más Años , Albuminuria/complicaciones , Presión Sanguínea , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus/epidemiología , Femenino , Francia , Tasa de Filtración Glomerular , Humanos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/psicología , Masculino , Persona de Mediana Edad , Medición de Resultados Informados por el Paciente , Pronóstico , Estudios Prospectivos , Proteinuria/complicaciones , Factores de Riesgo
17.
J Transl Med ; 16(1): 104, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665821

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. METHODS: LC-MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann-Whitney p value ≤ 0.05) and a minimum of twofold change. RESULTS: Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. CONCLUSIONS: This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Proteoma/metabolismo , Proteómica , Adulto , Anciano , Bases de Datos de Proteínas , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
18.
PLoS Pathog ; 12(1): e1005395, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808779

RESUMEN

Cytomegalovirus (CMV) is the most common cause of congenital infection, and is a major cause of sensorineural hearing loss and neurological disabilities. Evaluating the risk for a CMV infected fetus to develop severe clinical symptoms after birth is crucial to provide appropriate guidance to pregnant women who might have to consider termination of pregnancy or experimental prenatal medical therapies. However, establishing the prognosis before birth remains a challenge. This evaluation is currently based upon fetal imaging and fetal biological parameters, but the positive and negative predictive values of these parameters are not optimal, leaving room for the development of new prognostic factors. Here, we compared the amniotic fluid peptidome between asymptomatic fetuses who were born as asymptomatic neonates and symptomatic fetuses who were either terminated in view of severe cerebral lesions or born as severely symptomatic neonates. This comparison allowed us to identify a 34-peptide classifier in a discovery cohort of 13 symptomatic and 13 asymptomatic neonates. This classifier further yielded 89% sensitivity, 75% specificity and an area under the curve of 0.90 to segregate 9 severely symptomatic from 12 asymptomatic neonates in a validation cohort, showing an overall better performance than that of classical fetal laboratory parameters. Pathway analysis of the 34 peptides underlined the role of viral entry in fetuses with severe brain disease as well as the potential importance of both beta-2-microglobulin and adiponectin to protect the injured fetal brain infected with CMV. The results also suggested the mechanistic implication of the T calcium channel alpha-1G (CACNA1G) protein in the development of seizures in severely CMV infected children. These results open a new field for potential therapeutic options. In conclusion, this study demonstrates that amniotic fluid peptidome analysis can effectively predict the severity of congenital CMV infection. This peptidomic classifier may therefore be used in clinical settings during pregnancy to improve prenatal counseling.


Asunto(s)
Líquido Amniótico/virología , Biomarcadores/análisis , Infecciones por Citomegalovirus/diagnóstico , Enfermedades Fetales/diagnóstico , Complicaciones Infecciosas del Embarazo/diagnóstico , Amniocentesis , Área Bajo la Curva , Infecciones por Citomegalovirus/transmisión , Femenino , Enfermedades Fetales/virología , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Péptidos/análisis , Embarazo , Curva ROC , Sensibilidad y Especificidad , Proteínas Virales/análisis
19.
Biochem Biophys Res Commun ; 487(1): 109-115, 2017 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-28396151

RESUMEN

Hyperlipidemia is a risk factor for initiation and progression of diabetic nephropathy but the metabolic pathways altered in the diabetic kidney in a context of hyperlipidemia remain incompletely described. Assuming that changes in urine composition reflect the alteration of renal metabolism and function, we analyzed the urine metabolite composition of diabetic (streptozotocin-treatment) and control (non diabetic) ApoE-/- mice fed a high cholesterol diet using targeted quantitative metabolomics. Urine metabolome was also compared to the plasma metabolome of the same animals. As previously shown, urine albuminuria/urine creatinine ratio (uACR) and glomerular area and plasma lipids (cholesterol, triglycerides) were more elevated in diabetic mice compared to control. After adjustment to urine creatinine, the abundance of 52 urine metabolites was significantly different in diabetic mice compared to control. Among them was a unique metabolite, C14:2-OH (3-hydroxytetradecadienoylcarnitine) that, in diabetic mice, was positively and significantly correlated with uACR, glomerular hypertrophy, blood glucose and plasma lipids. That metabolite was not detected in plasma. C14:2-OH is a long-chain acylcarnitine reminiscent of altered fatty acid beta oxidation. Other acylcarnitines, particularly the short chains C3-OH, C3-DC, C4:1, C5-DC, C5-M-DC, C5-OH that are reminiscent of altered oxidation of branched and aromatic amino acids were also exclusively detected in urine but were only correlated with plasma lipids. Finally, the renal gene expression of several enzymes involved in fatty acid and/or amino acid oxidation was significantly reduced in diabetic mice compared to control. This included the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA (Ehhadh) that might play a central role in C14:2-OH production. This study indicate that the development of diabetes in a context of hyperlipidemia is associated with a reduced capacity of kidney to oxidize fatty acids and amino acids with the consequence of an elevation of urinary acetylcarnitines including C14:2-OH that specifically reflects diabetic nephropathy.


Asunto(s)
Carnitina/análogos & derivados , Carnitina/orina , Nefropatías Diabéticas/orina , Hiperlipidemias/orina , Animales , Apolipoproteínas E/genética , Biomarcadores/sangre , Nefropatías Diabéticas/complicaciones , Hiperlipidemias/etiología , Masculino , Ratones , Ratones Noqueados , Regulación hacia Arriba
20.
Nephrol Dial Transplant ; 32(12): 2079-2089, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27984204

RESUMEN

BACKGROUND: In spite of its invasive nature and risks, kidney biopsy is currently required for precise diagnosis of many chronic kidney diseases (CKDs). Here, we explored the hypothesis that analysis of the urinary proteome can discriminate different types of CKD irrespective of the underlying mechanism of disease. METHODS: We used data from the proteome analyses of 1180 urine samples from patients with different types of CKD, generated by capillary electrophoresis coupled to mass spectrometry. A set of 706 samples served as the discovery cohort, and 474 samples were used for independent validation. For each CKD type, peptide biomarkers were defined using statistical analysis adjusted for multiple testing. Potential biomarkers of statistical significance were combined in support vector machine (SVM)-based classifiers. RESULTS: For seven different types of CKD, several potential urinary biomarker peptides (ranging from 116 to 619 peptides) were defined and combined into SVM-based classifiers specific for each CKD. These classifiers were validated in an independent cohort and showed good to excellent accuracy for discrimination of one CKD type from the others (area under the receiver operating characteristic curve ranged from 0.77 to 0.95). Sequence analysis of the biomarkers provided further information that may clarify the underlying pathophysiology. CONCLUSIONS: Our data indicate that urinary proteome analysis has the potential to identify various types of CKD defined by pathological assessment of renal biopsies and current clinical practice in general. Moreover, these approaches may provide information to model molecular changes per CKD.


Asunto(s)
Biomarcadores/orina , Proteoma/análisis , Proteómica/métodos , Insuficiencia Renal Crónica/diagnóstico , Urinálisis/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Insuficiencia Renal Crónica/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA