Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 19(11): e1011761, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37939157

RESUMEN

The nap particle is an immunogenic surface adhesion complex from Mycoplasma genitalium. It is essential for motility and responsible for binding sialylated oligosaccharides on the surface of the host cell. The nap particle is composed of two P140-P110 heterodimers, the structure of which was recently solved. However, the interpretation of the mechanism by which the mycoplasma cells orchestrate adhesion remained challenging. Here, we provide cryo-electron tomography structures at ~11 Å resolution, which allow for the distinction between the bound and released state of the nap particle, displaying the in vivo conformational states. Fitting of the atomically resolved structures reveals that bound sialylated oligosaccharides are stabilized by both P110 and P140. Movement of the stalk domains allows for the transfer of conformational changes from the interior of the cell to the binding pocket, thus having the capability of an active release process. It is likely that the same mechanism can be transferred to other Mycoplasma species that belong to the pneumoniae cluster.


Asunto(s)
Mycoplasma genitalium , Mycoplasma genitalium/metabolismo , Adhesión Bacteriana , Tomografía con Microscopio Electrónico , Oligosacáridos/metabolismo
2.
Nature ; 540(7634): 607-610, 2016 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-27842382

RESUMEN

RNA polymerase I (Pol I) is a highly processive enzyme that transcribes ribosomal DNA (rDNA) and regulates growth of eukaryotic cells. Crystal structures of free Pol I from the yeast Saccharomyces cerevisiae have revealed dimers of the enzyme stabilized by a 'connector' element and an expanded cleft containing the active centre in an inactive conformation. The central bridge helix was unfolded and a Pol-I-specific 'expander' element occupied the DNA-template-binding site. The structure of Pol I in its active transcribing conformation has yet to be determined, whereas structures of Pol II and Pol III have been solved with bound DNA template and RNA transcript. Here we report structures of active transcribing Pol I from yeast solved by two different cryo-electron microscopy approaches. A single-particle structure at 3.8 Å resolution reveals a contracted active centre cleft with bound DNA and RNA, and a narrowed pore beneath the active site that no longer holds the RNA-cleavage-stimulating domain of subunit A12.2. A structure at 29 Å resolution that was determined from cryo-electron tomograms of Pol I enzymes transcribing cellular rDNA confirms contraction of the cleft and reveals that incoming and exiting rDNA enclose an angle of around 150°. The structures suggest a model for the regulation of transcription elongation in which contracted and expanded polymerase conformations are associated with active and inactive states, respectively.

3.
Mol Microbiol ; 108(3): 319-329, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29470847

RESUMEN

The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.


Asunto(s)
Mycoplasma genitalium/genética , Mycoplasma genitalium/fisiología , Orgánulos/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/genética , Proteínas Bacterianas/metabolismo , Adhesión Celular , Tomografía con Microscopio Electrónico/métodos , Electrones , Mutación , Mycoplasma pneumoniae/genética , Orgánulos/metabolismo
4.
Mol Microbiol ; 105(6): 869-879, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28671286

RESUMEN

Mycoplasma genitalium, the causative agent of non-gonococcal urethritis and pelvic inflammatory disease in humans, is a small eubacterium that lacks a peptidoglycan cell wall. On the surface of its plasma membrane is the major surface adhesion complex, known as NAP that is essential for adhesion and gliding motility of the organism. Here, we have performed cryo-electron tomography of intact cells and detergent permeabilized M. genitalium cell aggregates, providing sub-tomogram averages of free and cell-attached NAPs respectively, revealing a tetrameric complex with two-fold rotational (C2) symmetry. Each NAP has two pairs of globular lobes (named α and ß lobes), arranged as a dimer of heterodimers with each lobe connected by a stalk to the cell membrane. The ß lobes are larger than the α lobes by 20%. Classification of NAPs showed that the complex can tilt with respect to the cell membrane. A protein complex containing exclusively the proteins P140 and P110, was purified from M. genitalium and was structurally characterized by negative-stain single particle EM reconstruction. The close structural similarity found between intact NAPs and the isolated P140/P110 complexes, shows that dimers of P140/P110 heterodimers are the only components of the extracellular region of intact NAPs in M. genitalium.


Asunto(s)
Adhesión Bacteriana/fisiología , Mycoplasma genitalium/metabolismo , Adhesión Bacteriana/genética , Mycoplasma/genética , Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología , Mycoplasma genitalium/genética , Mycoplasma genitalium/ultraestructura , Orgánulos , Uretritis/microbiología
5.
Proc Natl Acad Sci U S A ; 109(37): 14906-11, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927413

RESUMEN

Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.


Asunto(s)
Patrón de Herencia/genética , Modelos Moleculares , Priones/química , Conformación Proteica , Levaduras/genética , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente
6.
Biophys J ; 106(4): 875-82, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559990

RESUMEN

The centromeric histone H3 variant centromeric protein A (CENP-A), whose sequence is the least conserved among all histone variants, is responsible for specifying the location of the centromere. Here, we present a comprehensive study of CENP-A nucleosome arrays by cryo-electron tomography. We see that CENP-A arrays have different biophysical properties than canonical ones under low ionic conditions, as they are more condensed with a 20% smaller average nearest-neighbor distance and a 30% higher nucleosome density. We find that CENP-A nucleosomes have a predominantly crossed DNA entry/exit site that is narrowed on average by 8°, and they have a propensity to stack face to face. We therefore propose that CENP-A induces geometric constraints at the nucleosome DNA entry/exit site to bring neighboring nucleosomes into close proximity. This specific property of CENP-A may be responsible for generating a fundamental process that contributes to increased chromatin fiber compaction that is propagated under physiological conditions to form centromeric chromatin.


Asunto(s)
Autoantígenos/química , Proteínas Cromosómicas no Histona/química , Nucleosomas/ultraestructura , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Humanos , Nucleosomas/química , Concentración Osmolar , Conformación Proteica , Xenopus laevis
7.
J Struct Biol ; 186(2): 205-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24698954

RESUMEN

Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.


Asunto(s)
Colorantes Fluorescentes , Microscopía Electrónica/métodos , Coloración y Etiquetado/métodos , Uniones Adherentes/ultraestructura , Animales , Cadherinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Ratones , Compuestos Organometálicos
8.
Proc Natl Acad Sci U S A ; 108(41): 16992-7, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21969536

RESUMEN

Chromatin folding in eukaryotes fits the genome into the limited volume of the cell nucleus. Formation of higher-order chromatin structures attenuates DNA accessibility, thus contributing to the control of essential genome functions such as transcription, DNA replication, and repair. The 30-nm fiber is thought to be the first hierarchical level of chromatin folding, but the nucleosome arrangement in the compact 30-nm fiber was previously unknown. We used cryoelectron tomography of vitreous sections to determine the structure of the compact, native 30-nm fiber of avian erythrocyte nuclei. The predominant geometry of the 30-nm fiber revealed by subtomogram averaging is a left-handed two-start helix with approximately 6.5 nucleosomes per 11 nm, in which the nucleosomes are juxtaposed face-to-face but are shifted off their superhelical axes with an axial translation of approximately 3.4 nm and an azimuthal rotation of approximately 54°. The nucleosomes produce a checkerboard pattern when observed in the direction perpendicular to the fiber axis but are not interdigitated. The nucleosome packing within the fibers shows larger center-to-center internucleosomal distances than previously anticipated, thus excluding the possibility of core-to-core interactions, explaining how transcription and regulation factors can access nucleosomes.


Asunto(s)
Cromatina/química , Eritrocitos/química , Animales , Fenómenos Biofísicos , Núcleo Celular/química , Núcleo Celular/ultraestructura , Pollos , Cromatina/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Eritrocitos/ultraestructura , Imagenología Tridimensional , Modelos Moleculares , Conformación Molecular , Nucleosomas/química , Nucleosomas/ultraestructura
9.
Nat Struct Mol Biol ; 30(3): 321-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36782049

RESUMEN

Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.


Asunto(s)
Adhesinas Bacterianas , Mycoplasma pneumoniae , Humanos , Microscopía por Crioelectrón , Mycoplasma pneumoniae/metabolismo , Lípidos , Colesterol/metabolismo
10.
J Struct Biol ; 178(2): 207-14, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22138167

RESUMEN

In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.


Asunto(s)
Cromatina/ultraestructura , Nucleosomas/ultraestructura , Animales , Pollos , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Eritrocitos/ultraestructura , Estrellas de Mar
11.
Nat Commun ; 11(1): 2877, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513917

RESUMEN

Mycoplasma genitalium is a human pathogen adhering to host target epithelial cells and causing urethritis, cervicitis and pelvic inflammatory disease. Essential for infectivity is a transmembrane adhesion complex called Nap comprising proteins P110 and P140. Here we report the crystal structure of P140 both alone and in complex with the N-terminal domain of P110. By cryo-electron microscopy (cryo-EM) and tomography (cryo-ET) we find closed and open Nap conformations, determined at 9.8 and 15 Å, respectively. Both crystal structures and the cryo-EM structure are found in a closed conformation, where the sialic acid binding site in P110 is occluded. By contrast, the cryo-ET structure shows an open conformation, where the binding site is accessible. Structural information, in combination with functional studies, suggests a mechanism for attachment and release of M. genitalium to and from the host cell receptor, in which Nap conformations alternate to sustain motility and guarantee infectivity.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycoplasma genitalium/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cristalografía por Rayos X , Humanos , Mutación/genética , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
12.
Nat Commun ; 11(1): 5188, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057023

RESUMEN

Mycoplasma pneumoniae is a bacterial human pathogen that causes primary atypical pneumonia. M. pneumoniae motility and infectivity are mediated by the immunodominant proteins P1 and P40/P90, which form a transmembrane adhesion complex. Here we report the structure of P1, determined by X-ray crystallography and cryo-electron microscopy, and the X-ray structure of P40/P90. Contrary to what had been suggested, the binding site for sialic acid was found in P40/P90 and not in P1. Genetic and clinical variability concentrates on the N-terminal domain surfaces of P1 and P40/P90. Polyclonal antibodies generated against the mostly conserved C-terminal domain of P1 inhibited adhesion of M. pneumoniae, and serology assays with sera from infected patients were positive when tested against this C-terminal domain. P40/P90 also showed strong reactivity against human infected sera. The architectural elements determined for P1 and P40/P90 open new possibilities in vaccine development against M. pneumoniae infections.


Asunto(s)
Adhesinas Bacterianas/inmunología , Adhesión Bacteriana/inmunología , Mycoplasma pneumoniae/inmunología , Neumonía por Mycoplasma/inmunología , Adhesinas Bacterianas/aislamiento & purificación , Adhesinas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Mycoplasma pneumoniae/aislamiento & purificación , Mycoplasma pneumoniae/patogenicidad , Neumonía por Mycoplasma/sangre , Neumonía por Mycoplasma/microbiología , Dominios Proteicos/inmunología
13.
Nat Cell Biol ; 14(3): 249-56, 2012 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-22327366

RESUMEN

The shear-responsive transcription factor Krüppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigated the regulation of miRNAs by KLF2 in endothelial cells. KLF2 binds to the promoter and induces a significant upregulation of the miR-143/145 cluster. Interestingly, miR-143/145 has been shown to control smooth muscle cell (SMC) phenotypes; therefore, we investigated the possibility of transport of these miRNAs between endothelial cells and SMCs. Indeed, extracellular vesicles secreted by KLF2-transduced or shear-stress-stimulated HUVECs are enriched in miR-143/145 and control target gene expression in co-cultured SMCs. Extracellular vesicles derived from KLF2-expressing endothelial cells also reduced atherosclerotic lesion formation in the aorta of ApoE(-/-) mice. Combined, our results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.


Asunto(s)
Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/trasplante , Exosomas/metabolismo , Exosomas/trasplante , Exosomas/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Lovastatina/análogos & derivados , Lovastatina/farmacología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Microscopía Confocal , Microscopía Electrónica , Miocitos del Músculo Liso/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Estrés Mecánico , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA