Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(2): 525-538.e14, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716508

RESUMEN

The ubiquitin ligase CUL3 is an essential regulator of neural crest specification whose aberrant activation has been linked to autism, schizophrenia, and hypertension. CUL3 exerts its roles by pairing with ∼90 distinct substrate adaptors, yet how the different CUL3-complexes are activated is poorly understood. Here, we show that CUL3 and its adaptor KLHL12 require two calcium-binding proteins, PEF1 and ALG2, for recognition of their substrate SEC31. PEF1 and ALG2 form a target-specific co-adaptor that translates a transient rise in cytosolic calcium levels into more persistent SEC31 ubiquitylation, which in turn triggers formation of large COPII coats and promotes collagen secretion. As calcium also instructs chondrocyte differentiation and collagen synthesis, calcium-dependent control of CUL3KLHL12 integrates collagen secretion into broader programs of craniofacial bone formation. Our work, therefore, identifies both calcium and CUL3 co-adaptors as important regulators of ubiquitylation events that control human development.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Colágeno/metabolismo , Células HEK293 , Humanos , Especificidad por Sustrato , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo
2.
Annu Rev Cell Dev Biol ; 30: 169-206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150009

RESUMEN

The trans-Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.


Asunto(s)
Transporte de Proteínas/fisiología , Red trans-Golgi/fisiología , Factor 1 de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/fisiología , Polaridad Celular , Citosol/fisiología , Humanos , Lípidos de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Fosfolípidos/fisiología , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/inmunología , Relación Estructura-Actividad , Vesículas Transportadoras/fisiología , Proteínas de Transporte Vesicular/fisiología , Red trans-Golgi/inmunología
3.
PLoS Biol ; 22(2): e3002508, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377076

RESUMEN

Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.


Asunto(s)
Mitocondrias , Peroxisomas , Retículo Endoplásmico , Movimiento Celular , Respiración de la Célula , Saccharomyces cerevisiae
4.
Cell ; 146(6): 851-4, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21907398

RESUMEN

F.-Ulrich Hartl and Arthur Horwich will share this year's Lasker Basic Medical Science Award for the discovery of the cell's protein-folding machinery, exemplified by cage-like structures that convert newly synthesized proteins into their biologically active forms. Their fundamental findings reveal mechanisms that operate in normal physiologic processes and help to explain the problems that arise in diseases of protein folding.


Asunto(s)
Distinciones y Premios , Biología/historia , Pliegue de Proteína , Proteínas/metabolismo , Animales , Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Historia del Siglo XX , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas/química , Estados Unidos
6.
Cell ; 136(5): 891-902, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19269366

RESUMEN

A genome-wide screen revealed previously unidentified components required for transport and Golgi organization (TANGO). We now provide evidence that one of these proteins, TANGO1, is an integral membrane protein localized to endoplasmic reticulum (ER) exit sites, with a luminal SH3 domain and a cytoplasmic proline-rich domain (PRD). Knockdown of TANGO1 inhibits export of bulky collagen VII from the ER. The SH3 domain of TANGO1 binds to collagen VII; the PRD binds to the COPII coat subunits, Sec23/24. In this scenario, PRD binding to Sec23/24 subunits could stall COPII carrier biogenesis to permit the luminal domain of TANGO1 to guide SH3-bound cargo into a growing carrier. All cells except those of hematopoietic origin express TANGO1. We propose that TANGO1 exports other cargoes in cells that do not secrete collagen VII. However, TANGO1 does not enter the budding carrier, which represents a unique mechanism to load cargo into COPII carriers.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Colágeno/metabolismo , Drosophila/citología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas
7.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649994

RESUMEN

Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3' ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.


Asunto(s)
ARN no Traducido/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Moldes Genéticos
8.
J Biol Chem ; 295(25): 8401-8412, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358066

RESUMEN

Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog-specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Sistemas CRISPR-Cas/genética , Línea Celular , Dimerización , Edición Génica , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Simulación de Dinámica Molecular , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas de Unión al GTP Monoméricas/genética , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Proteínas de Transporte Vesicular/química
10.
Proc Natl Acad Sci U S A ; 115(52): E12255-E12264, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30545919

RESUMEN

Large coat protein complex II (COPII)-coated vesicles serve to convey the large cargo procollagen I (PC1) from the endoplasmic reticulum (ER). The link between large cargo in the lumen of the ER and modulation of the COPII machinery remains unresolved. TANGO1 is required for PC secretion and interacts with PC and COPII on opposite sides of the ER membrane, but evidence suggests that TANGO1 is retained in the ER, and not included in normal size (<100 nm) COPII vesicles. Here we show that TANGO1 is exported out of the ER in large COPII-coated PC1 carriers, and retrieved back to the ER by the retrograde coat, COPI, mediated by the C-terminal RDEL retrieval sequence of HSP47. TANGO1 is known to target the COPII initiation factor SEC12 to ER exit sites through an interacting protein, cTAGE5. SEC12 is important for the growth of COPII vesicles, but it is not sorted into small budded vesicles. We found both cTAGE5 and SEC12 were exported with TANGO1 in large COPII carriers. In contrast to its exclusion from small transport vesicles, SEC12 was particularly enriched around ER membranes and large COPII carriers that contained PC1. We constructed a split GFP system to recapitulate the targeting of SEC12 to PC1 via the luminal domain of TANGO1. The minimal targeting system enriched SEC12 around PC1 and generated large PC1 carriers. We conclude that TANGO1, cTAGE5, and SEC12 are copacked with PC1 into COPII carriers to increase the size of COPII, thus ensuring the capture of large cargo.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Procolágeno/metabolismo , Factores de Transcripción/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Colágeno Tipo I/genética , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Procolágeno/genética , Transporte de Proteínas , Factores de Transcripción/genética
11.
Proc Natl Acad Sci U S A ; 115(11): 2557-2560, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487213

RESUMEN

In keeping with the growing movement in scientific publishing toward transparency in data and methods, we propose changes to journal authorship policies and procedures to provide insight into which author is responsible for which contributions, better assurance that the list is complete, and clearly articulated standards to justify earning authorship credit. To accomplish these goals, we recommend that journals adopt common and transparent standards for authorship, outline responsibilities for corresponding authors, adopt the Contributor Roles Taxonomy (CRediT) (docs.casrai.org/CRediT) methodology for attributing contributions, include this information in article metadata, and require authors to use the ORCID persistent digital identifier (https://orcid.org). Additionally, we recommend that universities and research institutions articulate expectations about author roles and responsibilities to provide a point of common understanding for discussion of authorship across research teams. Furthermore, we propose that funding agencies adopt the ORCID identifier and accept the CRediT taxonomy. We encourage scientific societies to further authorship transparency by signing on to these recommendations and promoting them through their meetings and publications programs.

12.
Proc Natl Acad Sci U S A ; 114(43): E8987-E8995, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073095

RESUMEN

RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5' terminal oligopyrimidine (5' TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs.


Asunto(s)
Exosomas/fisiología , ARN Pequeño no Traducido/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , ADN/química , ADN/metabolismo , Exosomas/química , Vesículas Extracelulares , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Proteína 1 de Unión a la Caja Y/genética
13.
Proc Natl Acad Sci U S A ; 114(37): E7707-E7716, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851831

RESUMEN

The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Aparato de Golgi/metabolismo , Masculino , Transporte de Proteínas , Ratas Sprague-Dawley , Proteínas de Transporte Vesicular/metabolismo
14.
J Biol Chem ; 293(22): 8410-8427, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666182

RESUMEN

In planar cell polarity (PCP), the epithelial cells are polarized along the plane of the cell surface perpendicular to the classical apical-basal axis, a process mediated by several conserved signaling receptors. Two PCP-signaling proteins, VANGL planar cell polarity protein 2 (Vangl2) and Frizzled6 (Fzd6), are located asymmetrically on opposite boundaries of the cell. Examining sorting of these two proteins at the trans-Golgi network (TGN), we demonstrated previously that the GTP-binding protein ADP-ribosylation factor-related protein 1 (Arfrp1) and the clathrin-associated adaptor protein complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast, TGN export of Frizzled6 does not depend on Arfrp1 or AP-1. Here, to further investigate the TGN sorting process in mammalian cells, we reconstituted release of Vangl2 and Frizzled6 from the TGN into vesicles in vitro Immunoblotting of released vesicles indicated that Vangl2 and Frizzled6 exit the TGN in separate compartments. Knockdown analysis revealed that a clathrin adaptor, epsinR, regulates TGN export of Frizzled6 but not of Vangl2. Protein interaction analysis suggested that epsinR forms a stable complex with clathrin and that this complex interacts with a conserved polybasic motif in the Frizzled6 cytosolic domain to package Frizzled6 into transport vesicles. Moreover, we found that Frizzled6-epsinR binding dissociates epsinR from AP-1, which may separate these two cargo adaptors from each other to perform distinct cargo-sorting functions. Our results suggest that Vangl2 and Frizzled6 are packaged into separate vesicles that are regulated by different clathrin adaptors at the TGN, which may contribute to their asymmetric localizations.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Receptores Frizzled/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Secuencia de Aminoácidos , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Unión Proteica , Transporte de Proteínas , Homología de Secuencia
16.
EMBO Rep ; 18(9): 1586-1603, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28754694

RESUMEN

Autophagosomes are double-membrane vesicles generated during autophagy. Biogenesis of the autophagosome requires membrane acquisition from intracellular compartments, the mechanisms of which are unclear. We previously found that a relocation of COPII machinery to the ER-Golgi intermediate compartment (ERGIC) generates ERGIC-derived COPII vesicles which serve as a membrane precursor for the lipidation of LC3, a key membrane component of the autophagosome. Here we employed super-resolution microscopy to show that starvation induces the enlargement of ER-exit sites (ERES) positive for the COPII activator, SEC12, and the remodeled ERES patches along the ERGIC A SEC12 binding protein, CTAGE5, is required for the enlargement of ERES, SEC12 relocation to the ERGIC, and modulates autophagosome biogenesis. Moreover, FIP200, a subunit of the ULK protein kinase complex, facilitates the starvation-induced enlargement of ERES independent of the other subunits of this complex and associates via its C-terminal domain with SEC12. Our data indicate a pathway wherein FIP200 and CTAGE5 facilitate starvation-induced remodeling of the ERES, a prerequisite for the production of COPII vesicles budded from the ERGIC that contribute to autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Membranas/metabolismo , Biogénesis de Organelos , Antígenos de Neoplasias/metabolismo , Proteínas Relacionadas con la Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Microscopía , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
Nature ; 482(7386): 495-500, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22358839

RESUMEN

Packaging of proteins from the endoplasmic reticulum into COPII vesicles is essential for secretion. In cells, most COPII vesicles are approximately 60-80 nm in diameter, yet some must increase their size to accommodate 300-400 nm procollagen fibres or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII coats have remained elusive. Here, we identified the ubiquitin ligase CUL3-KLHL12 as a regulator of COPII coat formation. CUL3-KLHL12 catalyses the monoubiquitylation of the COPII-component SEC31 and drives the assembly of large COPII coats. As a result, ubiquitylation by CUL3-KLHL12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitylation controls the size and function of a vesicle coat.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Forma de la Célula , Colágeno/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células HeLa , Humanos , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Transporte de Proteínas , Ubiquitinación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(25): E3199-206, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056309

RESUMEN

Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII.


Asunto(s)
Proteínas 14-3-3/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Unión Proteica , Proteínas Recombinantes/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(46): 14360-5, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578783

RESUMEN

Secretory proteins traffic from endoplasmic reticulum (ER) to Golgi via the coat protein complex II (COPII) vesicle, which consists of five cytosolic components (Sar1, Sec23-24, and Sec13-31). In eukaryotes, COPII transport has diversified due to gene duplication, creating multiple COPII paralogs. Evidence has accumulated, revealing the functional heterogeneity of COPII paralogs in protein ER export. Sar1B, the small GTPase of COPII machinery, seems to be specialized for large cargo secretion in mammals. Arabidopsis contains five Sar1 and seven Sec23 homologs, and AtSar1a was previously shown to exhibit different effects on α-amylase secretion. However, mechanisms underlying the functional diversity of Sar1 paralogs remain unclear in higher organisms. Here, we show that the Arabidopsis Sar1 homolog AtSar1a exhibits distinct localization in plant cells. Transgenic Arabidopsis plants expressing dominant-negative AtSar1a exhibit distinct effects on ER cargo export. Mutagenesis analysis identified a single amino acid, Cys84, as being responsible for the functional diversity of AtSar1a. Structure homology modeling and interaction studies revealed that Cys84 is crucial for the specific interaction of AtSar1a with AtSec23a, a distinct Arabidopsis Sec23 homolog. Structure modeling and coimmunoprecipitation further identified a corresponding amino acid, Cys484, on AtSec23a as being essential for the specific pair formation. At the cellular level, the Cys484 mutation affects the distinct function of AtSec23a on vacuolar cargo trafficking. Additionally, dominant-negative AtSar1a affects the ER export of the transcription factor bZIP28 under ER stress. We have demonstrated a unique plant pair of COPII machinery function in ER export and the mechanism underlying the functional diversity of COPII paralogs in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Modelos Moleculares , Mutación Missense , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/genética
20.
Traffic ; 15(5): 531-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24479619

RESUMEN

Export of transmembrane proteins from the endoplasmic reticulum (ER) is driven by directed incorporation into coat protein complex II (COPII)-coated vesicles. The sorting of some cargo proteins into COPII vesicles was shown to be mediated by specific interactions between transmembrane and COPII-coat-forming proteins. But even though some signals for ER exit have been identified on the cytosolic domains of membrane proteins, the general signaling and sorting mechanisms of ER export are still poorly understood. To investigate the role of cargo protein oligomer formation in the export process, we have created a transmembrane fusion protein that - owing to its FK506-binding protein domains - can be oligomerized in isolated membranes by addition of a small-molecule dimerizer. Packaging of the fusion protein into COPII vesicles is strongly enhanced in the presence of the dimerizer, demonstrating that the oligomeric state is an ER export signal for this membrane protein. Surprisingly, the cytosolic tail is not required for this oligomerization-dependent effect on protein sorting. Thus, an alternative mechanism, such as membrane bending, must account for ER export of the fusion protein.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Citosol/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Multimerización de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Unión Proteica/fisiología , Proteínas de Unión a Tacrolimus/metabolismo , Levaduras/metabolismo , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA