Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Invest New Drugs ; 41(1): 142-152, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36695998

RESUMEN

The promising antitumor effects of progesterone derivatives have been identified in many studies. However, the specific mechanism of action of this class of compounds has not been fully described. Therefore, in this study, we investigated the antiproliferative and (anti)estrogenic activities of novel pentacyclic derivatives and benzylidenes of the progesterone series. The antiproliferative effects of the compounds were evaluated on hormone-dependent MCF7 breast cancer cells using the MTT test. Estrogen receptor α (ERα) activity was assessed by a luciferase-based reporter assay. Immunoblotting was used to evaluate the expression of signaling proteins. All benzylidenes demonstrated inhibitory effects with IC50 values below 10 µM, whereas pentacyclic derivatives were less active. These patterns may be associated with the lability of the geometry of benzylidene molecules, which contributes to an increase in the affinity of interaction with the receptor. The selected compounds showed significant anti-estrogenic potency. Benzylidene 1d ((8 S,9 S,10R,13 S,14 S,17 S)-17-[(2E)-3-(4-fluorophenyl)prop-2-enoyl]-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthren-3-one) was the most active in antiproliferative and anti-estrogenic assays. Apoptosis induced by compound 1d was accompanied by decreases in CDK4, ERα, and Cyclin D1 expression. Compounds 1d and 3d were characterized by high inhibitory potency against resistant breast cancer cells. Apoptosis induced by the leader compounds was confirmed by PARP cleavage and flow cytometry analysis. Compound 3d caused cell arrest in the G2/M phase. Further analysis of novel derivatives of the progesterone series is of great importance for medicinal chemistry, drug design, and oncology.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Receptor alfa de Estrógeno/metabolismo , Progesterona/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Antagonistas de Estrógenos/farmacología , Apoptosis , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad
2.
Bioorg Med Chem ; 53: 116521, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844036

RESUMEN

Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes were designed as potential HSP90 inhibitors. A series of the compounds was synthesized by oximation of (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-ones followed by O-acylation with acylamidobenzoic acids. The obtained compounds showed an antiproliferative effect on three breast cancer cell lines (MCF7, MDA-MB-231 and HCC1954). Compound 16s exhibited high antiproliferative potency against HCC1954 breast cancer cells with the IC50 value of 6 µM was selected for in-depth evaluation. Compound 16s did not inhibit the growth of normal epithelial cells. We have demonstrated that the compound 16s can induce apoptosis in cancer cells via inhibition of HSP90 "client" proteins including a key oncogenic receptor, HER2/neu. Described here compounds can be considered for further basic and preclinical investigation as a part of HSP90/HER2-targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Oxazoles/farmacología , Oximas/farmacología , Acilación , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad
3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142768

RESUMEN

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125-250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Línea Celular Tumoral , Proliferación Celular , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Especies Reactivas de Oxígeno , Serina-Treonina Quinasas TOR/metabolismo , Triazinas/farmacología , Urea
4.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328603

RESUMEN

Chemotherapy of soft tissue sarcomas (STS) is restricted by low chemosensitivity and multiple drug resistance (MDR). The purpose of our study was the analysis of MDR mechanism in different types of STS. We assessed the expression of ABC-transporters, MVP, YB-1, and analyzed their correlation with chemosensitivity of cancer cells. STS specimens were obtained from 70 patients without metastatic disease (2018-2020). Expression level of MDR-associated genes was estimated by qRT-PCR and cytofluorimetry. Mutations in ABC-transporter genes were captured by exome sequencing. Chemosensitivity (SI) of STS to doxorubicin (Dox), ifosfamide (Ifo), gemcitabine (Gem), and docetaxel (Doc) was analyzed in vitro. We found strong correlation in ABCB1, ABCC1, and ABCG2 expression. We demonstrated strong negative correlations in ABCB1 and ABCG2 expression with SI (Doc) and SI (Doc + Gem), and positive correlation of MVP expression with SI (Doc) and SI (Doc + Gem) in undifferentiated pleomorphic sarcoma. Pgp expression was shown in 5 out of 44 STS samples with prevalence of synovial sarcoma relapses and it is strongly correlated with SI (Gem). Mutations in MDR-associated genes were rarely found. Overall, STS demonstrated high heterogeneity in chemosensitivity that makes reasonable in vitro chemosensitivity testing to improve personalized STS therapy, and classic ABC-transporters are not obviously involved in MDR appearance.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Transportadoras de Casetes de Unión a ATP/genética , Docetaxel/uso terapéutico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Humanos , Recurrencia Local de Neoplasia , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Sarcoma/patología , Neoplasias de los Tejidos Blandos/tratamiento farmacológico
5.
Molecules ; 27(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335288

RESUMEN

In this study, the in vitro antimicrobial, antiparasitic, antiproliferative and cytotoxic activities of essential oil from Baccharis parvidentata Malag. (EO-Bp) and Lippia origanoides Kunth (EO-Lo) were explored. The relevant effects were observed against the parasitic protozoans Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei and Leishmania amazonensis (ranging 0.6 to 39.7 µg/mL) and malignant MCF-7, MCF-7/HT, 22Rv1, and A431 cell lines (ranging 6.1 to 31.5 µg/mL). In parallel, EO-Bp showed better selective indexes in comparison with EO-Lo against peritoneal macrophages from BALB/c mice and MRC-5 cell line. In conclusion, EO-Lo is known to show a wide range of health benefits that could be added as another potential use of this oil with the current study. In the case of EO-Bp, the wide spectrum of its activities against protozoal parasites and malignant cells, as well as its selectivity in comparison with non-malignant cells, could suggest an interesting candidate for further tests as a new therapeutic alternative.


Asunto(s)
Baccharis , Lippia , Aceites Volátiles , Trypanosoma cruzi , Animales , Brasil , Ratones , Aceites Volátiles/farmacología
6.
J Org Chem ; 86(12): 7975-7986, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34043357

RESUMEN

Oligomycin A is a potent antibiotic and antitumor agent. However, its applications are restricted by its high toxicity and low bioavailability. In this study, we obtained Oligomycin A Diels-Alder adducts with benzoquinone and N-benzylmaleimide and determined their absolute configurations by combining 1H and ROESY NMR data with molecular mechanics conformational analysis and quantum chemical reaction modeling. The latter showed that adduct stereochemistry is controlled by hydrogen bonding of the Oligomycin A side-chain isopropanol moiety with the carbonyl group of the dienophile. Biological studies showed that the Diels-Alder modification of the Oligomycin A diene system resulted in a complex antiproliferative potential pattern. The synthesized adducts were determined to be more active against the triple-negative (ERα, PR, and HER2 negative) breast cancer cell line MDA-MB-231 and lung carcinoma cell line A-549 compared to Oligomycin A. Meanwhile, Oligomycin A was more potent against myeloid leukemia cell line K-562 and breast carcinoma cell line MCF-7 than its derivatives. Thus, modification of the diene moiety of Oligomycin A is a promising strategy for developing novel antitumor agents based on its scaffold.


Asunto(s)
Modelos Moleculares , Humanos , Células MCF-7 , Conformación Molecular , Oligomicinas/farmacología
7.
Org Biomol Chem ; 19(47): 10432-10443, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34846407

RESUMEN

An effective method for the synthesis of 8-aryl-4,5-dihydrothiazolo[4',5':3,4]benzo[1,2-c]isoxazol-2-amines was developed. This method includes the α-keto bromination of 3-aryl-6,7-dihydrobenzo[c]isoxazol-4(5H)-ones followed by the condensation of the obtained bromo derivatives with thiourea in acetonitrile. Using virtual screening, a series of acylated derivatives of the obtained compounds were selected as potential HSP90 inhibitors. These compounds were prepared and evaluated as antiproliferative agents against three cancer cell lines (A431, 22Rv1, and MCF-7). Compounds 8b, 8c and 8q exhibiting high antiproliferative potency against MCF-7 breast cancer cells with IC50 values ranging from 2.3 to 9.5 µM were chosen for in-depth evaluation. The selected compounds had remarkable effects on HSP90 client proteins, including steroid hormone receptors and the anti-apoptotic factor BCL2. The obtained compounds are of interest for anticancer drug development.


Asunto(s)
Tiazoles
8.
Molecules ; 26(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771077

RESUMEN

Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERα suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/antagonistas & inhibidores , Exosomas/efectos de los fármacos , MicroARNs/antagonistas & inhibidores , Tamoxifeno/farmacología , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Exosomas/genética , Exosomas/metabolismo , Femenino , Humanos , Células MCF-7 , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922925

RESUMEN

Exosomes are the small vesicles that are secreted by different types of normal and tumour cells and can incorporate and transfer their cargo to the recipient cells. The main goal of the present work was to study the tumour exosomes' ability to accumulate the parent mutant DNA or RNA transcripts with their following transfer to the surrounding cells. The experiments were performed on the MCF7 breast cancer cells that are characterized by the unique coding mutation in the PIK3CA gene. Using two independent methods, Sanger sequencing and allele-specific real-time PCR, we revealed the presence of the fragments of the mutant DNA and RNA transcripts in the exosomes secreted by the MCF7 cells. Furthermore, we demonstrated the MCF7 exosomes' ability to incorporate into the heterologous MDA-MB-231 breast cancer cells supporting the possible transferring of the exosomal cargo into the recipient cells. Sanger sequencing of the DNA from MDA-MB-231 cells (originally bearing a wild type of PIK3CA) treated with MCF7 exosomes showed no detectable amount of mutant DNA or RNA; however, using allele-specific real-time PCR, we revealed a minor signal from amplification of a mutant allele, showing a slight increase of mutant DNA in the exosome-treated MDA-MB-231 cells. The results demonstrate the exosome-mediated secretion of the fragments of mutant DNA and mRNA by the cancer cells and the exosomes' ability to transfer their cargo into the heterologous cells.


Asunto(s)
Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , ADN de Neoplasias/genética , Exosomas/genética , Alelos , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Mutación/genética , ARN Mensajero/genética
10.
Org Biomol Chem ; 18(29): 5571-5576, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32662797

RESUMEN

An efficient and practical method has been developed for the synthesis of steroidal imidazoheterocycles via cost-effective and environmentally benign FeCl3-catalyzed oxidative amination. A library of steroidal imidazo[1,2-a]pyridines was directly synthesized from readily available 2-aminopyridines and steroidal ketones in aerobic conditions. The synthesized compounds were screened for activity on human microsomal cytochrome P450s CYP7, CYP17 and CYP21. Antiproliferative activity of two lead compounds 3ia and 3la was additionally evaluated against the human MCF-7 (breast cancer), SKOV3 (ovarian cancer), and 22Rv1 (prostate cancer) cell lines. Steroidal imidazo[1,2-a]pyridine 3la which is a substrate molecule for CYP17A1 with IC50 = 1.7 µM (MCF-7), 3.0 (SKOV3), and 6.0 µM (22Rv1) has proved to be more active than reference drug cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Férricos/química , Compuestos Heterocíclicos/farmacología , Imidazoles/farmacología , Esteroides/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Imidazoles/síntesis química , Imidazoles/química , Conformación Molecular , Estereoisomerismo , Esteroides/síntesis química , Esteroides/química
11.
Bioorg Chem ; 104: 104324, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33142432

RESUMEN

In this article, we describe the synthesis of 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides bearing cyclic diamine residues at positions 6 or 7; the synthesis is based on the nucleophilic substitution of halogens. All synthesized 6(7)-aminoquinoxaline-2-carbonitrile 1,4-dioxides 3-6 demonstrated higher cytotoxicity and hypoxia selectivity compared to the reference agent tirapazamine against breast adenocarcinoma cell lines (MCF7, MDA-MB-231). The structure and position of the diamine residue considerably affects the antiproliferative properties of the quinoxaline-2-carbonitrile 1,4-dioxides. The introduction of a halogen atom at position 7 in the quinoxaline ring of 4a considerably increases the cytotoxicity of compounds 5a and 6a under both normoxic and hypoxic conditions. However, the most hypoxia-selective derivatives were non-halogenated 7-aminosubstituted 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 3a-j. Of the 32 novel synthesized derivatives, approximately 20 of the 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides demonstrated high antiproliferative potency against wild type leukemia cells K562 and drug-resistant subline K562/4 with the expression of p-glycoprotein (p-gp) compared to the reference agent doxorubicin, which exhibited one order of magnitude lower activity towards K562/4 cells than towards K562 cells. Lead compounds 5a and 3f inhibited HIF-1α expression and activity and induced apoptosis in hypoxic tumor cells, which was confirmed by poly(ADP-ribose)polymerase (PARP) cleavage. Moreover, 5a and 3f showed strong antiestrogenic potencies in MCF7 breast cancer cells. Thus, the described series of quinoxaline 1,4-dioxides has high anticancer potential and good aqueous solubility. Therefore, these compounds are promising for further drug development of hypoxia-targeted anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Nitrilos/farmacología , Quinoxalinas/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Quinoxalinas/síntesis química , Quinoxalinas/química , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad
12.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255562

RESUMEN

Essential oils (EOs) are known for their use in cosmetics, food industries, and traditional medicine. This study presents the chemical composition and therapeutic properties against kinetoplastid and eukaryotic cells of the EO from Melaleucaleucadendra (L.) L. (Myrtaceae). Forty-five compounds were identified in the oil by GC-MS, containing a major component the 1,8-cineole (61%). The EO inhibits the growth of Leishmania amazonensis and Trypanosoma brucei at IC50 values <10 µg/mL. However, 1,8 cineole was not the main compound responsible for the activity. Against malignant (22Rv1, MCF-7, EFO-21, including resistant sublines MCF-7/Rap and MCF-7/4OHTAMO) and non-malignant (MCF-10A, J774A.1 and peritoneal macrophage) cells, IC50 values from 55 to 98 µg/mL and from 94 to 144 µg/mL were obtained, respectively. However, no activity was observed on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Candida parapsilosis, Microsporum canis, or Trypanosoma cruzi. The EO was able to control the lesion size and parasite burden in the model of cutaneous leishmaniasis in BALB/c mice caused by L. amazonensis compared to untreated animals (p < 0.05) and similar with those treated with Glucantime® (p > 0.05). This work constitutes the first evidence of antiproliferative potentialities of EO from M. leucadendra growing in Cuba and could promote further preclinical investigations to confirm the medical value of this plant, in particular for leishmaniasis treatment.


Asunto(s)
Melaleuca/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Pruebas de Sensibilidad Parasitaria , Fitoquímicos/química , Fitoquímicos/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Tripanocidas/química , Tripanocidas/farmacología
13.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752019

RESUMEN

The acid-catalyzed cyclization of benzylidenes based on 16-dehydropregnenolone acetate (16-DPA) was studied. It was found that these compounds readily undergo regioselective interrupted Nazarov cyclization with trapping chloride ion and an efficient method of the synthesis of d-annulated pentacyclic steroids based on this reaction was proposed. The structures of the synthesized pentacyclic steroids were determined by NMR and X-ray diffraction. It was found that the reaction affords a single diastereomer, but the latter can crystallize as two conformers depending on the structure. Antiproliferative activity of synthesized compounds was evaluated against two breast cancer cell lines: MCF-7 and MDA-MB-231. All tested compounds showed relatively high antiproliferative activity. The synthetic potential of the protocol developed was illustrated by the gram-scale experiment.


Asunto(s)
Antineoplásicos/síntesis química , Esteroides/química , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclización , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Teoría Cuántica , Estereoisomerismo , Esteroides/síntesis química , Esteroides/farmacología , Relación Estructura-Actividad , Difracción de Rayos X
14.
Bioorg Chem ; 91: 103142, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400555

RESUMEN

A flexible approach to previously unknown spirofused and linked 1,3,4-thiadiazine derivatives of steroids with selective control of heterocyclization patterns is disclosed. (N-Arylcarbamoyl)spiroandrostene-17,6' [1,3,4]thiadiazines and (N-arylcarbamoyl)17-[1',3',4']thiadiazine-substituted androstenes, novel types of heterosteroids, were prepared from 16ß,17ß-epoxypregnenolone and 21-bromopregna-5,16-dien-20-one in good to high yields by the treatment with oxamic acid thiohydrazides. The synthesized compounds were screened for antiproliferative activity against the human androgen receptor-positive prostate cancer cell line 22Rv1. Most of (N-arylcarbamoyl)17-[1',3',4']thiadiazine-substituted androstenes exhibit better antiproliferative potency (IC50 = 2.1-6.6 µM) than the antiandrogen bicalutamide. Compounds 7d with IC50 = 3.0 µM and 7j with IC50 = 2.1 µM proved to be the most active in the series under study. Lead synthesized compound 7j downregulates AR expression and activity in 22Rv1 cells. NF-κB activity is also blocked in 7j-treated 22Rv1 cells. Apoptosis is considered as a possible mechanism of 7j-induced cell death.


Asunto(s)
Antagonistas de Andrógenos/síntesis química , Antagonistas de Andrógenos/farmacología , Androstadienos/síntesis química , Androstadienos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/química , Tiadiazinas/química , Proliferación Celular , Humanos , Masculino , FN-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas
15.
Chem Biodivers ; 16(9): e1900332, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31381816

RESUMEN

Brassinosteroids (BS), a class of plant-specific steroid hormones, are considered as new potential anticancer agents for the treatment of tumors of different origin, including hormone-dependent cancers. Effects of a synthetic brassinosteroid BS4 ((22R,23R,24R)-22,23-dihydroxy-24-methyl-B-homo-7-oxa-5α-cholest-2-en-6-one ((3aS,7aR,7bS,9aS,10R,12aS,12bS)-10-[(2S,3R,4R,5R)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-7a,9a-dimethyl-1,3a,4,7,7a,7b,8,9,9a,10,11,12,12a,12b-tetradecahydro-3H-benzo[c]indeno[5,4-e]oxepin-3-one)) on hormone-dependent breast cancer cells and normal epithelial cells and its impact on the estrogen receptor signaling were evaluated. Cytotoxicity was assessed by MTT-test; expression of estrogen receptor α and survivin was measured by immunoblotting. Transactivation analysis of luciferase reporter gene was performed for ERα and AP-1 factors after the brassinosteroid treatment. Dock6 and Autodock Vina were used for molecular docking. BS4 revealed a significant antiproliferative effect towards the hormone-dependent breast cancer cells and was not active against normal epithelial cells. BS4 action on MCF-7 breast cancer cells was found to be complex: a decrease in ERα expression as well as in its transcription activity was accompanied by inhibition of ERα-related signaling pathways (AP-1 complex and survivin). BS4 binding mode to ERα ligand-binding domain was analyzed by molecular docking. The obtained results show that antiproliferative and antiestrogenic properties of the brassinosteroid BS4, as well as its ability to inhibit the anti-apoptotic protein survivin may be of interest for further development of anticancer agents.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Brasinoesteroides/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Brasinoesteroides/química , Brasinoesteroides/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptor alfa de Estrógeno/metabolismo , Humanos , Células MCF-7 , Conformación Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
16.
Cancer Invest ; 36(3): 199-209, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29624460

RESUMEN

A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells. Compound 2g inhibits of cancer cell growth through p53-independent mechanisms. Our results showed that compound 2g sensitized MCF-7 cells to metformin in hypoxia. Treatment with 2g results in the increase of ROS accumulation in cancer cells. Compound 2g can be considered as the lead compound for further anticancer drug design, evaluation, and development of new potent antitumor agents.


Asunto(s)
Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Nitrilos/síntesis química , Quinoxalinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Metformina/farmacología , Estructura Molecular , Nitrilos/química , Nitrilos/farmacología , Especies Reactivas de Oxígeno/metabolismo
17.
Molecules ; 23(4)2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617321

RESUMEN

Exosomes are small vesicles which are produced by the cells and released into the surrounding space. They can transfer biomolecules into recipient cells. The main goal of the work was to study the exosome involvement in the cell transfer of hormonal resistance. The experiments were performed on in vitro cultured estrogen-dependent MCF-7 breast cancer cells and MCF-7 sublines resistant to SERM tamoxifen and/or biguanide metformin, which exerts its anti-proliferative effect, at least in a part, via the suppression of estrogen machinery. The exosomes were purified by differential ultracentrifugation, cell response to tamoxifen was determined by MTT test, and the level and activity of signaling proteins were determined by Western blot and reporter analysis. We found that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead to the partial resistance of the MCF-7 cells to antiestrogen drugs. The primary resistant cells and the cells with the exosome-induced resistance were characterized with these common features: decrease in ERα activity and parallel activation of Akt and AP-1, NF-κB, and SNAIL1 transcriptional factors. In general, we evaluate the established results as the evidence of the possible exosome involvement in the transferring of the hormone/metformin resistance in breast cancer cells.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Antagonistas de Estrógenos/farmacología , Moduladores de los Receptores de Estrógeno/farmacología , Exosomas/metabolismo , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo
18.
IUBMB Life ; 68(4): 281-92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26892736

RESUMEN

Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the constitutive activation of Akt/Snail1/E-cadherin signaling that opens new perspectives to overcome the metformin/tamoxifen resistance of breast cancer.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Hipoglucemiantes/farmacología , Metformina/farmacología , Tamoxifeno/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Exp Cell Res ; 319(20): 3150-9, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23973669

RESUMEN

The tolerance of cancer cells to hypoxia depends on the combination of different factors--from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial-mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O2 atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK - the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well the level of AMPK phosphorylation may be considered as predictors of the tumor sensitivity to anti-angiogenic drugs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hipoxia/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Células Cultivadas , Femenino , Humanos , Células MCF-7 , Factores de Transcripción de la Familia Snail
20.
RSC Adv ; 14(32): 23257-23272, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39045402

RESUMEN

A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a K i value of 42.2 nM compared to the reference AAZ (K i = 25.7 nM). Nevertheless, most of the synthesized compounds have their highest activity against CA I and CA II isoforms over CA IX and CA XII. A molecular modeling study was used for an estimation of the binding mode of the selected ligand 7g in the active site of CA IX. The most active compounds (7b, 7f, 7h, and 18) exhibited significant antiproliferative activity against MCF-7, Capan-1, DND-41, HL60, and Z138 cell lines, with IC50 values in low micromolar concentrations. Moreover, derivatives 7a, 7e, and 8g showed similar hypoxic cytotoxic activity and selectivity compared to tirapazamine (TPZ) against adenocarcinoma cells MCF-7. The structure-activity relationships analysis revealed that the presence of a halogen atom or a sulfonamide group as substituents in the phenyl ring of quinoxaline-2-carbonitrile 1,4-dioxides was favorable for overall cytotoxicity against most of the tested cancer cell lines. Additionally, the presence of a carbonitrile fragment in position 2 of the heterocycle also had a positive effect on the antitumor properties of such derivatives against the majority of cell lines. The most potent derivative, 3-trifluoromethylquinoxaline 1,4-dioxide 7h, demonstrated higher or close antiproliferative activity compared to the reference agents, such as doxorubicin, and etoposide, with an IC50 range of 1.3-2.1 µM. Analysis of the obtained results revealed important patterns in the structure-activity relationship. Moreover, these findings highlight the potential of selected lead sulfonamides on the quinoxaline 1,4-dioxide scaffold for further in-depth evaluation and development of chemotherapeutic agents targeting carbonic anhydrases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA