Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186360

RESUMEN

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 111(9): 3228-32, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344316

RESUMEN

The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Cambio Climático/estadística & datos numéricos , Ambiente , Predicción/métodos , Modelos Teóricos , Agricultura/estadística & datos numéricos , Biota , Humanos , Malaria/epidemiología , Factores Socioeconómicos , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
3.
Proc Natl Acad Sci U S A ; 111(9): 3251-6, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344275

RESUMEN

Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.


Asunto(s)
Riego Agrícola/estadística & datos numéricos , Cambio Climático , Actividades Humanas/estadística & datos numéricos , Modelos Teóricos , Ciclo Hidrológico , Abastecimiento de Agua/estadística & datos numéricos , Simulación por Computador , Predicción , Humanos
4.
Proc Natl Acad Sci U S A ; 111(9): 3245-50, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344289

RESUMEN

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Modelos Teóricos , Crecimiento Demográfico , Abastecimiento de Agua/estadística & datos numéricos , Predicción , Temperatura
5.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
7.
Sci Data ; 10(1): 482, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481606

RESUMEN

We present a new open source dataset FLODIS that links estimates of flood-induced human displacements, fatalities, and economic damages to flooded areas observed through remote sensing. The dataset connects displacement data from the Internal Displacement Monitoring Centre (IDMC), as well as data on fatalities and damages from the Emergency Events Database (EM-DAT), with the Global Flood Database (GFD), a satellite-based inventory of historic flood footprints. It thereby provides a spatially explicit estimate of the flood hazard underlying each individual disaster event. FLODIS contains two datasets with event-specific information for 335 human displacement events and 695 mortality/damage events that occurred around the world between 2000 and 2018. Additionally, we provide estimates of affected population, GDP, and critical infrastructure, as well as socio-economic indicators; and we provide geocoding for displacement events ascribed to other types of disasters, such as tropical cyclones, so that they may be linked to corresponding hazard estimates in future work. FLODIS facilitates integrated flood risk analysis, allowing, for example, for detailed assessments of local flood-damage and displacement vulnerability.

8.
Sci Adv ; 9(1): eadd6616, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598974

RESUMEN

Global warming is likely to increase the proportion of intense hurricanes in the North Atlantic. Here, we analyze how this may affect economic growth. To this end, we introduce an event-based macroeconomic growth model that temporally resolves how growth depends on the heterogeneity of hurricane shocks. For the United States, we find that economic growth losses scale superlinearly with shock heterogeneity. We explain this by a disproportional increase of indirect losses with the magnitude of direct damage, which can lead to an incomplete recovery of the economy between consecutive intense landfall events. On the basis of two different methods to estimate the future frequency increase of intense hurricanes, we project annual growth losses to increase between 10 and 146% in a 2°C world compared to the period 1980-2014. Our modeling suggests that higher insurance coverage can compensate for this climate change-induced increase in growth losses.

9.
Proc Natl Acad Sci U S A ; 106(49): 20572-7, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19858472

RESUMEN

Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R(c), no conventional monsoon can develop; above R(c), two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R(c) for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.

10.
PLoS One ; 17(11): e0276764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383529

RESUMEN

International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3°C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.


Asunto(s)
Cambio Climático , Emigración e Inmigración , Dinámica Poblacional , Demografía , Renta , Economía
11.
Phys Rev E ; 106(6-1): 064138, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671094

RESUMEN

The radiation model is a parameter-free model of human mobility that has been applied primarily for short-distance moves, such as commuting. When applied to migration, it underestimates the number of long-range moves, such as between different US states. Here we show that it additionally suffers from a conceptual inconsistency that can have substantial numerical effects on long-distance moves. We propose a modification of the radiation model that introduces a dependence on the angle between any two alternative potential destinations, accounting for the possibility that migrants may have preferences about the approximate direction of their move. We demonstrate that this modification mitigates the conceptual inconsistency and improves the model fit to observational migration data, without introducing any fitting parameters.

12.
Phys Rev E ; 104(5-1): 054311, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942836

RESUMEN

Human migration is often studied using gravity models. These models, however, have known limitations, including analytic inconsistencies and a dependence on empirical data to calibrate multiple parameters for the region of interest. Overcoming these limitations, the radiation model has been proposed as an alternative, universal approach to predicting different forms of human mobility, but has not been adopted for studying migration. Here we show, using data on within-country migration from the USA and Mexico, that the radiation model systematically underpredicts long-range moves, while the traditional gravity model performs well for large distances. The universal opportunity model, an extension of the radiation model, shows an improved fit of long-range moves compared to the original radiation model, but at the cost of introducing two additional parameters. We propose a more parsimonious extension of the radiation model that introduces a single parameter. We demonstrate that it fits the data over the full distance spectrum and also-unlike the universal opportunity model-preserves the analytical property of the original radiation model of being equivalent to a gravity model in the limit of a uniform population distribution.

13.
Nat Food ; 2(1): 11-14, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37117657

RESUMEN

Global food security is threatened by the effects of COVID-19 on international agricultural supply chains and locusts destroying crops and livelihoods in the Horn of Africa and South Asia. We quantify the possible impacts on global supplies and prices of wheat, rice and maize. We show that local production declines have moderate impacts on global prices and supply-but trade restrictions and precautionary purchases by a few key actors could create global food price spikes and severe local food shortages.

14.
Nat Commun ; 10(1): 1005, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824763

RESUMEN

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

15.
Earths Future ; 5(6): 605-616, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30377624

RESUMEN

Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the US. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA