RESUMEN
BACKGROUND: While several studies in cerebral amyloid angiopathy (CAA) focus on cognitive function, data on neuropsychiatric symptoms (NPS) and lifelong mental activities in these patients are scarce. Since NPS are associated with functional impairment, faster cognitive decline and faster progression to death, replication studies in more diverse settings and samples are warranted. METHODS: We prospectively recruited n = 69 CAA patients and n = 18 cognitively normal controls (NC). The number and severity of NPS were assessed using the Alzheimer's Disease (AD) Assessment Scale's (ADAS) noncognitive subscale. We applied different regression models exploring associations between NPS number or severity and group status (CAA vs. NC), CAA severity assessed with magnetic resonance imaging (MRI) or cognitive function (Mini-Mental State Examination (MMSE), ADAS cognitive subscale), adjusting for age, sex, years of education, arterial hypertension, AD pathology, and apolipoprotein E status. Mediation analyses were performed to test indirect effects of lifelong mental activities on CAA severity and NPS. RESULTS: Patients with CAA had 4.86 times (95% CI 2.20-10.73) more NPS and 3.56 units (95% CI 1.94-5.19) higher expected NPS severity than NC. Higher total CAA severity on MRI predicted 1.14 times (95% CI 1.01.-1.27) more NPS and 0.57 units (95% CI 0.19-0.95) higher expected NPS severity. More severe white matter hyperintensities were associated with 1.21 times more NPS (95% CI 1.05-1.39) and 0.63 units (95% CI 0.19-1.08) more severe NPS. NPS number (MMSE mean difference - 1.15, 95% CI -1.67 to -0.63; ADAS cognitive mean difference 1.91, 95% CI 1.26-2.56) and severity (MMSE - 0.55, 95% CI -0.80 to -0.30; ADAS cognitive mean difference 0.89, 95% CI 0.57-1.21) predicted lower cognitive function. Greater lifelong mental activities partially mediated the relationship between CAA severity and NPS (indirect effect 0.05, 95% CI 0.0007-0.13), and greater lifelong mental activities led to less pronounced CAA severity and thus to less NPS (indirect effect - 0.08, 95% CI -0.22 to -0.002). DISCUSSION: This study suggests that NPS are common in CAA, and that this relationship may be driven by CAA severity. Furthermore, NPS seem to be tied to lower cognitive function. However, lifelong mental activities might mitigate the impact of NPS in CAA.
Asunto(s)
Angiopatía Amiloide Cerebral , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Femenino , Masculino , Anciano , Estudios Transversales , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Angiopatía Amiloide Cerebral/psicología , Persona de Mediana Edad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Anciano de 80 o más AñosRESUMEN
Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance. We used data from 361 participants along the AD continuum, who were enrolled in the multicentre DELCODE study. The IFSHs were rated visually based on FLAIR magnetic resonance imaging. We performed ordinal regression to examine the relationship between the IFSHs and cerebrospinal fluid-derived amyloid positivity and tau positivity (Aß42/40 ratio ≤ 0.08; pTau181 ≥ 73.65 pg/mL) and linear regression to examine the relationship between cognitive performance (i.e., Mini-Mental State Examination and global cognitive and domain-specific performance) and the IFSHs. We controlled the models for age, sex, years of education, and history of hypertension. The IFSH scores were higher in those participants with amyloid positivity (OR: 1.95, 95% CI: 1.05-3.59) but not tau positivity (OR: 1.12, 95% CI: 0.57-2.18). The IFSH scores were higher in older participants (OR: 1.05, 95% CI: 1.00-1.10) and lower in males compared to females (OR: 0.44, 95% CI: 0.26-0.76). We did not find sufficient evidence linking the IFSH scores with cognitive performance after correcting for demographics and AD biomarker positivity. IFSHs may reflect the aberrant accumulation of amyloid ß beyond age.