RESUMEN
The AlphaFold2 prediction algorithm opened up the possibility of exploring proteins' structural space at an unprecedented scale. Currently, >200 million protein structures predicted by this approach are deposited in AlphaFoldDB, covering entire proteomes of multiple organisms, including humans. Predicted structures are, however, stored without detailed functional annotations describing their chemical behaviour. Partial atomic charges, which map electron distribution over a molecule and provide a clue to its chemical reactivity, are an important example of such data. We introduce the web application αCharges: a tool for the quick calculation of partial atomic charges for protein structures from AlphaFoldDB. The charges are calculated by the recent empirical method SQE+qp, parameterised for this class of molecules using robust quantum mechanics charges (B3LYP/6-31G*/NPA) on PROPKA3 protonated structures. The computed partial atomic charges can be downloaded in common data formats or visualised via the powerful Mol* viewer. The αCharges application is freely available at https://alphacharges.ncbr.muni.cz with no login requirement.
Asunto(s)
Biología Computacional , Proteínas , Programas Informáticos , Humanos , Algoritmos , Proteoma , Conformación Proteica , Proteínas/química , Biología Computacional/instrumentación , Biología Computacional/métodosRESUMEN
Partial atomic charges serve as a simple model for the electrostatic distribution of a molecule that drives its interactions with its surroundings. Since partial atomic charges are frequently used in computational chemistry, chemoinformatics and bioinformatics, many computational approaches for calculating them have been introduced. The most applicable are fast and reasonably accurate empirical charge calculation approaches. Here, we introduce Atomic Charge Calculator II (ACC II), a web application that enables the calculation of partial atomic charges via all the main empirical approaches and for all types of molecules. ACC II implements 17 empirical charge calculation methods, including the highly cited (QEq, EEM), the recently published (EQeq, EQeq+C), and the old but still often used (PEOE). ACC II enables the fast calculation of charges even for large macromolecular structures. The web server also offers charge visualization, courtesy of the powerful LiteMol viewer. The calculation setup of ACC II is very straightforward and enables the quick calculation of high-quality partial charges. The application is available at https://acc2.ncbr.muni.cz.
Asunto(s)
Modelos Moleculares , Programas Informáticos , Hidrógeno/química , Internet , Estructura Molecular , Fenoles/química , Receptores Nicotínicos/química , Electricidad Estática , Proteína X Asociada a bcl-2/químicaRESUMEN
BACKGROUND: Partial atomic charges find many applications in computational chemistry, chemoinformatics, bioinformatics, and nanoscience. Currently, frequently used methods for charge calculation are the Electronegativity Equalization Method (EEM), Charge Equilibration method (QEq), and Extended QEq (EQeq). They all are fast, even for large molecules, but require empirical parameters. However, even these advanced methods have limitations-e.g., their application for peptides, proteins, and other macromolecules is problematic. An empirical charge calculation method that is promising for peptides and other macromolecular systems is the Split-charge Equilibration method (SQE) and its extension SQE+q0. Unfortunately, only one parameter set is available for these methods, and their implementation is not easily accessible. RESULTS: In this article, we present for the first time an optimized guided minimization method (optGM) for the fast parameterization of empirical charge calculation methods and compare it with the currently available guided minimization (GDMIN) method. Then, we introduce a further extension to SQE, SQE+qp, adapted for peptide datasets, and compare it with the common approaches EEM, QEq EQeq, SQE, and SQE+q0. Finally, we integrate SQE and SQE+qp into the web application Atomic Charge Calculator II (ACC II), including several parameter sets. CONCLUSION: The main contribution of the article is that it makes SQE methods with their parameters accessible to the users via the ACC II web application ( https://acc2.ncbr.muni.cz ) and also via a command-line application. Furthermore, our improvement, SQE+qp, provides an excellent solution for peptide datasets. Additionally, optGM provides comparable parameters to GDMIN in a markedly shorter time. Therefore, optGM allows us to perform parameterizations for charge calculation methods with more parameters (e.g., SQE and its extensions) using large datasets.