Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2221308120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897975

RESUMEN

Aerobic reactions are essential to sustain plant growth and development. Impaired oxygen availability due to excessive water availability, e.g., during waterlogging or flooding, reduces plant productivity and survival. Consequently, plants monitor oxygen availability to adjust growth and metabolism accordingly. Despite the identification of central components in hypoxia adaptation in recent years, molecular pathways involved in the very early activation of low-oxygen responses are insufficiently understood. Here, we characterized three endoplasmic reticulum (ER)-anchored Arabidopsis ANAC transcription factors, namely ANAC013, ANAC016, and ANAC017, which bind to the promoters of a subset of hypoxia core genes (HCGs) and activate their expression. However, only ANAC013 translocates to the nucleus at the onset of hypoxia, i.e., after 1.5 h of stress. Upon hypoxia, nuclear ANAC013 associates with the promoters of multiple HCGs. Mechanistically, we identified residues in the transmembrane domain of ANAC013 to be essential for transcription factor release from the ER, and provide evidence that RHOMBOID-LIKE 2 (RBL2) protease mediates ANAC013 release under hypoxia. Release of ANAC013 by RBL2 also occurs upon mitochondrial dysfunction. Consistently, like ANAC013 knockdown lines, rbl knockout mutants exhibit impaired low-oxygen tolerance. Taken together, we uncovered an ER-localized ANAC013-RBL2 module, which is active during the initial phase of hypoxia to enable fast transcriptional reprogramming.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Serina Endopeptidasas , Factores de Transcripción , Humanos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Fibrinógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipoxia/metabolismo , Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Serina Endopeptidasas/metabolismo
2.
Plant Cell ; 33(4): 1381-1397, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33793857

RESUMEN

A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here, we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base pairing, leading to higher flexibility of PHO1.2 mRNA at a key high guanine-cytosine�(GC) regulatory region inhibiting translation, ∼350-nt downstream of the start codon. Sense-antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide resolution studies of functional mRNA-antisense pairs.


Asunto(s)
Oryza/genética , ARN sin Sentido/genética , ARN Mensajero/genética , ARN no Traducido/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , ARN Bicatenario , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN no Traducido/química
3.
BMC Plant Biol ; 23(1): 294, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37264342

RESUMEN

BACKGROUND: Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS: Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION: We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lectinas/genética , Lectinas/metabolismo , Resistencia a la Enfermedad/fisiología , Hojas de la Planta/metabolismo , Mutación , Proteínas Portadoras/genética , Fenotipo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Pseudomonas syringae/metabolismo , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
Plant Physiol ; 186(1): 66-78, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33793937

RESUMEN

Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.


Asunto(s)
Oxidación-Reducción , Estrés Oxidativo , Oxígeno/metabolismo , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
5.
J Exp Bot ; 71(2): 620-631, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31421053

RESUMEN

Compartmentation of proteins and processes is a defining feature of eukaryotic cells. The growth and development of organisms is critically dependent on the accurate sorting of proteins within cells. The mechanisms by which cytosol-synthesized proteins are delivered to the membranes and membrane compartments have been extensively characterized. However, the protein complement of any given compartment is not precisely fixed and some proteins can move between compartments in response to metabolic or environmental triggers. The mechanisms and processes that mediate such relocation events are largely uncharacterized. Many proteins can in addition perform multiple functions, catalysing alternative reactions or performing structural, non-enzymatic functions. These alternative functions can be equally important functions in each cellular compartment. Such proteins are generally not dual-targeted proteins in the classic sense of having targeting sequences that direct de novo synthesized proteins to specific cellular locations. We propose that redox post-translational modifications (PTMs) can control the compartmentation of many such proteins, including antioxidant and/or redox-associated enzymes.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Oxidación-Reducción
6.
New Phytol ; 224(4): 1668-1684, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386759

RESUMEN

Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.


Asunto(s)
Arabidopsis/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Células Vegetales/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Carbono/metabolismo , Transporte de Electrón , Glutatión/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , NAD/metabolismo , Oxígeno/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
7.
Biochim Biophys Acta ; 1850(8): 1497-508, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25542301

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. SCOPE OF REVIEW: The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. MAJOR CONCLUSIONS: Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. GENERAL SIGNIFICANCE: We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Meristema/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Proliferación Celular , Meristema/citología , Meristema/crecimiento & desarrollo , Modelos Biológicos , Oxidación-Reducción , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
8.
Plant Physiol ; 169(2): 914-30, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26276844

RESUMEN

Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence.


Asunto(s)
Adaptación Biológica , Producción de Cultivos , Hojas de la Planta/fisiología , Producción de Cultivos/métodos , Calidad de los Alimentos , Fitomejoramiento/métodos
9.
Plant Physiol ; 169(2): 1027-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26243618

RESUMEN

Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myb/genética , Tolerancia a la Sal/genética , Semillas/fisiología , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética
10.
Plant Cell ; 25(6): 2115-31, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23800963

RESUMEN

Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified salt-responsive ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance-mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK kinase kinase6 (MAP3K6), MAPK5, dehydration-responsive element bindinG2A (DREB2A), and zinc finger protein179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species-activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Microscopía Confocal , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oxidantes/farmacología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Physiol ; 164(1): 181-200, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24204023

RESUMEN

Identifying regulatory elements and revealing their role in gene expression regulation remains a central goal of plant genome research. We exploited the detailed genomic sequencing information of a large number of Arabidopsis (Arabidopsis thaliana) accessions to characterize known and to identify novel cis-regulatory elements in gene promoter regions of Arabidopsis by relying on conservation as the hallmark signal of functional relevance. Based on the genomic layout and the obtained density profiles of single-nucleotide polymorphisms (SNPs) in sequence regions upstream of transcription start sites, the average length of promoter regions in Arabidopsis could be established at 500 bp. Genes associated with high degrees of variability of their respective upstream regions are preferentially involved in environmental response and signaling processes, while low levels of promoter SNP density are common among housekeeping genes. Known cis-elements were found to exhibit a decreased SNP density than sequence regions not associated with known motifs. For 15 known cis-element motifs, strong positional preferences relative to the transcription start site were detected based on their promoter SNP density profiles. Five novel candidate cis-element motifs were identified as consensus motifs of 17 sequence hexamers exhibiting increased sequence conservation combined with evidence of positional preferences, annotation information, and functional relevance for inducing correlated gene expression. Our study demonstrates that the currently available resolution of SNP data offers novel ways for the identification of functional genomic elements and the characterization of gene promoter sequences.


Asunto(s)
Arabidopsis/genética , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Secuencia de Bases , Secuencia Conservada , ADN Intergénico , Frecuencia de los Genes , Ontología de Genes , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Sitio de Iniciación de la Transcripción
12.
Plant Cell Environ ; 38(2): 349-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24738758

RESUMEN

Oxidative stress causes dramatic changes in the expression levels of many genes. The formation of a functional protein through successful mRNA translation is central to a coordinated cellular response. To what extent the response towards reactive oxygen species (ROS) is regulated at the translational level is poorly understood. Here we analysed leaf- and tissue-specific translatomes using a set of transgenic Arabidopsis thaliana lines expressing a FLAG-tagged ribosomal protein to immunopurify polysome-bound mRNAs before and after oxidative stress. We determined transcript levels of 171 ROS-responsive genes upon paraquat treatment, which causes formation of superoxide radicals, at the whole-organ level. Furthermore, the translation of mRNAs was determined for five cell types: mesophyll, bundle sheath, phloem companion, epidermal and guard cells. Mesophyll and bundle sheath cells showed the strongest response to paraquat treatment. Interestingly, several ROS-responsive transcription factors displayed cell type-specific translation patterns, while others were translated in all cell types. In part, cell type-specific translation could be explained by the length of the 5'-untranslated region (5'-UTR) and the presence of upstream open reading frames (uORFs). Our analysis reveals insights into the translational regulation of ROS-responsive genes, which is important to understanding cell-specific responses and functions during oxidative stress.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Genes de Plantas , Paraquat/toxicidad , Hojas de la Planta/citología , Biosíntesis de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regiones no Traducidas 5'/genética , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Polirribosomas/efectos de los fármacos , Polirribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(42): 17129-34, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23027948

RESUMEN

Organisms have evolved endogenous biological clocks as internal timekeepers to coordinate metabolic processes with the external environment. Here, we seek to understand the mechanism of synchrony between the oscillator and products of metabolism known as Reactive Oxygen Species (ROS) in Arabidopsis thaliana. ROS-responsive genes exhibit a time-of-day-specific phase of expression under diurnal and circadian conditions, implying a role of the circadian clock in transcriptional regulation of these genes. Hydrogen peroxide production and scavenging also display time-of-day phases. Mutations in the core-clock regulator, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), affect the transcriptional regulation of ROS-responsive genes, ROS homeostasis, and tolerance to oxidative stress. Mis-expression of EARLY FLOWERING 3, LUX ARRHYTHMO, and TIMING OF CAB EXPRESSION 1 affect ROS production and transcription, indicating a global effect of the clock on the ROS network. We propose CCA1 as a master regulator of ROS homeostasis through association with the Evening Element in promoters of ROS genes in vivo to coordinate time-dependent responses to oxidative stress. We also find that ROS functions as an input signal that affects the transcriptional output of the clock, revealing an important link between ROS signaling and circadian output. Temporal coordination of ROS signaling by CCA1 and the reciprocal control of circadian output by ROS reveal a mechanistic link that allows plants to master oxidative stress responses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Homeostasis/fisiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Biología Computacional , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Mediciones Luminiscentes , Mutación/genética , Reacción en Cadena de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant J ; 74(1): 25-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23252408

RESUMEN

In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor 'Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Leupeptinas , Mutagénesis Insercional , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Factores de Transcripción/genética
15.
Plant J ; 76(2): 258-73, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23855375

RESUMEN

Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Brasinoesteroides/metabolismo , Pared Celular/fisiología , Citocininas/metabolismo , Perfilación de la Expresión Génica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Transducción de Señal , Cloruro de Sodio , Esteroides Heterocíclicos/metabolismo , Factores de Transcripción/genética
16.
Cell Mol Life Sci ; 70(4): 689-709, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22996258

RESUMEN

Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.


Asunto(s)
Craterostigma/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Aclimatación , Catalasa/genética , Craterostigma/genética , Desecación , Sequías , Perfilación de la Expresión Génica , Metaboloma , Estrés Oxidativo , Agua/metabolismo
17.
Plant Physiol ; 160(4): 1781-94, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23090585

RESUMEN

Although the positive effect of elevated CO(2) concentration [CO(2)] on plant growth is well known, it remains unclear whether global climate change will positively or negatively affect crop yields. In particular, relatively little is known about the role of hormone pathways in controlling the growth responses to elevated [CO(2)]. Here, we studied the impact of elevated [CO(2)] on plant biomass and metabolism in Arabidopsis (Arabidopsis thaliana) in relation to the availability of gibberellins (GAs). Inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO(2)] (350 µmol CO(2) mol(-1)) was reverted by elevated [CO(2)] (750 µmol CO(2) mol(-1)). Thus, we investigated the metabolic adjustment and modulation of gene expression in response to changes in growth of plants imposed by varying the GA regime in ambient and elevated [CO(2)]. In the presence of PAC (low-GA regime), the activities of enzymes involved in photosynthesis and inorganic nitrogen assimilation were markedly increased at elevated [CO(2)], whereas the activities of enzymes of organic acid metabolism were decreased. Under ambient [CO(2)], nitrate, amino acids, and protein accumulated upon PAC treatment; however, this was not the case when plants were grown at elevated [CO(2)]. These results suggest that only under ambient [CO(2)] is GA required for the integration of carbohydrate and nitrogen metabolism underlying optimal biomass determination. Our results have implications concerning the action of the Green Revolution genes in future environmental conditions.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Dióxido de Carbono/farmacología , Giberelinas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Ácidos Carboxílicos/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Nitrógeno/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Piridinas/metabolismo , Almidón/metabolismo
18.
Cell Mol Life Sci ; 69(19): 3245-57, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22842779

RESUMEN

The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.


Asunto(s)
Evolución Biológica , Crecimiento y Desarrollo , Especies Reactivas de Oxígeno/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Glutarredoxinas/metabolismo , Homeostasis , NADPH Oxidasas/metabolismo , Plantas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Tiorredoxinas/metabolismo , Levaduras/metabolismo
19.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111818

RESUMEN

Endosperm development in barley starts with the formation of a multinucleate syncytium, followed by cellularization in the ventral part of the syncytium generating endosperm transfer cells (ETCs) as first differentiating subdomain, whereas aleurone (AL) cells will originate from the periphery of the enclosing syncytium. Positional signaling in the syncytial stage determines cell identity in the cereal endosperm. Here, we performed a morphological analysis and employed laser capture microdissection (LCM)-based RNA-seq of the ETC region and the peripheral syncytium at the onset of cellularization to dissect developmental and regulatory programs directing cell specification in the early endosperm. Transcriptome data revealed domain-specific characteristics and identified two-component signaling (TCS) and hormone activities (auxin, ABA, ethylene) with associated transcription factors (TFs) as the main regulatory links for ETC specification. On the contrary, differential hormone signaling (canonical auxin, gibberellins, cytokinin) and interacting TFs control the duration of the syncytial phase and timing of cellularization of AL initials. Domain-specific expression of candidate genes was validated by in situ hybridization and putative protein-protein interactions were confirmed by split-YFP assays. This is the first transcriptome analysis dissecting syncytial subdomains of cereal seeds and provides an essential framework for initial endosperm differentiation in barley, which is likely also valuable for comparative studies with other cereal crops.

20.
Genome Biol ; 24(1): 108, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158941

RESUMEN

BACKGROUND: Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS: Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION: Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.


Asunto(s)
Brasinoesteroides , Zea mays , Zea mays/genética , Alelos , Secuenciación de Inmunoprecipitación de Cromatina , Fenotipo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA