Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29653926

RESUMEN

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Asunto(s)
Fibronectinas/antagonistas & inhibidores , Insuficiencia Cardíaca/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Quinasa 1 de Adhesión Focal/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Integrina beta1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Infiltración Neutrófila/efectos de los fármacos , Fosforilación , Polimerizacion , Transducción de Señal/efectos de los fármacos
2.
Hum Mol Genet ; 25(6): 1192-202, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744329

RESUMEN

Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD.


Asunto(s)
Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Serpinas/biosíntesis , Serpinas/genética , Proteínas de Fase Aguda/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Femenino , Integrinas/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Sarcolema/metabolismo , Serpinas/metabolismo , Transgenes , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo
3.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26966179

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Asunto(s)
Catepsinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/enzimología , Distrofia Muscular Animal/enzimología , Distrofia Muscular de Duchenne/enzimología , Animales , Citoesqueleto/enzimología , Citoesqueleto/genética , Citoesqueleto/patología , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Necrosis , Proteolisis , Sarcolema/enzimología , Sarcolema/genética , Sarcolema/patología
4.
Proc Natl Acad Sci U S A ; 109(29): 11794-9, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753500

RESUMEN

Inflammation is a major factor in heart disease. IκB kinase (IKK) and its downstream target NF-κB are regulators of inflammation and are activated in cardiac disorders, but their precise contributions and targets are unclear. We analyzed IKK/NF-κB function in the heart by a gain-of-function approach, generating an inducible transgenic mouse model with cardiomyocyte-specific expression of constitutively active IKK2. In adult animals, IKK2 activation led to inflammatory dilated cardiomyopathy and heart failure. Transgenic hearts showed infiltration with CD11b(+) cells, fibrosis, fetal reprogramming, and atrophy of myocytes with strong constitutively active IKK2 expression. Upon transgene inactivation, the disease was reversible even at an advanced stage. IKK-induced cardiomyopathy was dependent on NF-κB activation, as in vivo expression of IκBα superrepressor, an inhibitor of NF-κB, prevented the development of disease. Gene expression and proteomic analyses revealed enhanced expression of inflammatory cytokines, and an IFN type I signature with activation of the IFN-stimulated gene 15 (ISG15) pathway. In that respect, IKK-induced cardiomyopathy resembled Coxsackievirus-induced myocarditis, during which the NF-κB and ISG15 pathways were also activated. Vice versa, in cardiomyocytes lacking the regulatory subunit of IKK (IKKγ/NEMO), the induction of ISG15 was attenuated. We conclude that IKK/NF-κB activation in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure by inducing an excessive inflammatory response and myocyte atrophy.


Asunto(s)
Cardiomiopatías/etiología , Activación Enzimática/fisiología , Insuficiencia Cardíaca/etiología , Quinasa I-kappa B/metabolismo , Miocitos Cardíacos/enzimología , FN-kappa B/metabolismo , Análisis de Varianza , Animales , Western Blotting , Antígeno CD11b/metabolismo , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Ensayo de Cambio de Movilidad Electroforética , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Técnicas Histológicas , Proteínas I-kappa B/metabolismo , Mediciones Luminiscentes , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Inhibidor NF-kappaB alfa
5.
Cell Rep ; 43(5): 114149, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678560

RESUMEN

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Asunto(s)
Factor de Transcripción Activador 4 , Músculo Esquelético , Atrofia Muscular , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Trombospondina 1 , Factor de Crecimiento Transformador beta , Animales , Masculino , Ratones , Factor de Transcripción Activador 4/metabolismo , Autofagia , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
FASEB J ; 26(12): 4990-5001, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22935140

RESUMEN

Inactivation of FoxO proteins by phosphorylation is the result of a number of stimuli, including the insulin/IGF pathway. We were interested in the consequence of blunting this pathway by employing transgenic mice with tetracycline-controllable conditional expression of a constitutively active allele of FOXO3 under the control of the forebrain-specific CaMKIIα promoter. Although transgene-expressing mice were viable, brain weight was reduced by 30% in adult animals. Brains showed an isocortex compression with normal cortical layering, and a size reduction in regions known to depend on adult neurogenesis, i.e., the olfactory bulbs and the dentate gyrus. On postnatal activation of the transgene, adult neurogenesis was also severely affected. Investigating the molecular basis of this phenotype, we observed enhanced apoptosis starting from embryonic day E10.5 and a subsequent loss of progenitors in the ventricular/subventricular zones, but not in the isocortex or the striatum of adult mice. The enhanced apoptosis was accompanied by increased expression of PIK3IP1, which we identified as a direct transcriptional target of FOXO3. Transfection of Pik3ip1 into differentiating neural progenitors resulted in a significant reduction of viable cells. We therefore conclude that neural progenitors are particularly vulnerable to FOXO3-induced apoptosis, which is mediated by PIK3IP1, a negative PI3 kinase regulator.


Asunto(s)
Factores de Transcripción Forkhead/genética , Células-Madre Neurales/metabolismo , Prosencéfalo/metabolismo , Animales , Apoptosis/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Análisis por Conglomerados , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular , Ventrículos Laterales/embriología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/metabolismo , Proteínas de la Membrana , Ratones , Ratones Endogámicos , Ratones Transgénicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
7.
Nat Commun ; 12(1): 3928, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168130

RESUMEN

The thrombospondin (Thbs) family of secreted matricellular proteins are stress- and injury-induced mediators of cellular attachment dynamics and extracellular matrix protein production. Here we show that Thbs1, but not Thbs2, Thbs3 or Thbs4, induces lethal cardiac atrophy when overexpressed. Mechanistically, Thbs1 binds and activates the endoplasmic reticulum stress effector PERK, inducing its downstream transcription factor ATF4 and causing lethal autophagy-mediated cardiac atrophy. Antithetically, Thbs1-/- mice develop greater cardiac hypertrophy with pressure overload stimulation and show reduced fasting-induced atrophy. Deletion of Thbs1 effectors/receptors, including ATF6α, CD36 or CD47 does not diminish Thbs1-dependent cardiac atrophy. However, deletion of the gene encoding PERK in Thbs1 transgenic mice blunts the induction of ATF4 and autophagy, and largely corrects the lethal cardiac atrophy. Finally, overexpression of PERK or ATF4 using AAV9 gene-transfer similarly promotes cardiac atrophy and lethality. Hence, we identified Thbs1-mediated PERK-eIF2α-ATF4-induced autophagy as a critical regulator of cardiomyocyte size in the stressed heart.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Miocardio/patología , Trombospondinas/metabolismo , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Atrofia , Autofagia/fisiología , Cardiomegalia/genética , Cardiomegalia/patología , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Expresión Génica , Lisosomas/metabolismo , Masculino , Ratones Transgénicos , Miocitos Cardíacos/patología , Proteolisis , Trombospondinas/genética , eIF-2 Quinasa/genética
8.
Nat Commun ; 10(1): 76, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622267

RESUMEN

Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7ß1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability.


Asunto(s)
Cardiomiopatías/patología , Integrinas/metabolismo , Sarcolema/patología , Trombospondinas/metabolismo , Animales , Células COS , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Células Cultivadas , Chlorocebus aethiops , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Ecocardiografía , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Miocitos Cardíacos , Cultivo Primario de Células , Dominios y Motivos de Interacción de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Sarcolema/metabolismo , Trombospondinas/genética
9.
JCI Insight ; 4(15): e128722, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393098

RESUMEN

Collagen production in the adult heart is thought to be regulated by the fibroblast, although cardiomyocytes and endothelial cells also express multiple collagen mRNAs. Molecular chaperones are required for procollagen biosynthesis, including heat shock protein 47 (Hsp47). To determine the cell types critically involved in cardiac injury­induced fibrosis theHsp47 gene was deleted in cardiomyocytes, endothelial cells, or myofibroblasts. Deletion ofHsp47 from cardiomyocytes during embryonic development or adult stages, or deletion from adult endothelial cells, did not affect cardiac fibrosis after pressure overload injury. However, myofibroblast-specific ablation of Hsp47; blocked fibrosis and deposition of collagens type I, III, and V following pressure overload as well as significantly reduced cardiac hypertrophy. Fibroblast-specific Hsp47-deleted mice showed lethality after myocardial infarction injury, with ineffective scar formation and ventricular wall rupture. Similarly, only myofibroblast-specific deletion of Hsp47reduced fibrosis and disease in skeletal muscle in a mouse model of muscular dystrophy. Mechanistically, deletion of Hsp47 from myofibroblasts reduced mRNA expression of fibrillar collagens and attenuated their proliferation in the heart without affecting paracrine secretory activity of these cells. The results show that myofibroblasts are the primary mediators of tissue fibrosis and scar formation in the injured adult heart, which unexpectedly affects cardiomyocyte hypertrophy.


Asunto(s)
Colágeno/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Ventrículos Cardíacos/patología , Distrofia Muscular de Cinturas/patología , Infarto del Miocardio/patología , Miofibroblastos/patología , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fibrosis , Perfilación de la Expresión Génica , Proteínas del Choque Térmico HSP47/genética , Ventrículos Cardíacos/citología , Humanos , Masculino , Ratones , Músculo Esquelético/citología , Distrofia Muscular de Cinturas/genética , Infarto del Miocardio/etiología , Miocitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Cultivo Primario de Células , Ratas , Sarcoglicanos/genética , Remodelación Ventricular
10.
Mol Cell Biol ; 38(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712757

RESUMEN

Thrombospondins are stress-inducible secreted glycoproteins with critical functions in tissue injury and healing. Thrombospondin-4 (Thbs4) is protective in cardiac and skeletal muscle, where it activates an adaptive endoplasmic reticulum (ER) stress response, induces expansion of the ER, and enhances sarcolemmal stability. However, it is unclear if Thbs4 has these protective functions from within the cell, from the extracellular matrix, or from the secretion process itself. In this study, we generated transgenic mice with cardiac cell-specific overexpression of a secretion-defective mutant of Thbs4 to evaluate its exclusive intracellular and secretion-dependent functions. Like wild-type Thbs4, the secretion-defective mutant upregulates the adaptive ER stress response and expands the ER and intracellular vesicles in cardiomyocytes. However, only the secretion-defective Thbs4 mutant produces cardiomyopathy with sarcolemmal weakness and rupture that is associated with reduced adhesion-forming glycoproteins in the membrane. Similarly, deletion of Thbs4 in the mdx mouse model of Duchenne muscular dystrophy enhances cardiomyocyte membrane instability and cardiomyopathy. Finally, overexpression of the secretion-defective Thbs4 mutant in Drosophila, but not wild-type Thbs4, impaired muscle function and sarcomere alignment. These results suggest that transit through the secretory pathway is required for Thbs4 to augment sarcolemmal stability, while ER stress induction and vesicular expansion mediated by Thbs4 are exclusively intracellular processes.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Trombospondinas/metabolismo , Animales , Animales Modificados Genéticamente , Cardiomiopatías/genética , Células Cultivadas , Drosophila melanogaster/genética , Estrés del Retículo Endoplásmico , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Transgénicos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Mutación , Miocitos Cardíacos/patología , Ratas , Sarcolema/metabolismo , Sarcolema/patología , Vías Secretoras , Trombospondinas/deficiencia , Trombospondinas/genética
11.
Elife ; 62017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29148970

RESUMEN

Cells deficient in the pro-death Bcl-2 family members Bax and Bak are known to be resistant to apoptotic cell death, and previous we have shown that these two effectors are also needed for mitochondrial-dependent cellular necrosis (Karch et al., 2013). Here we show that mouse embryonic fibroblasts deficient in Bax/Bak1 are resistant to the third major form of cell death associated with autophagy through a mechanism involving lysosome permeability. Indeed, specifically targeting Bax only to the lysosome restores autophagic cell death in Bax/Bak1 null cells. Moreover, a monomeric-only mutant form of Bax is sufficient to increase lysosomal membrane permeability and restore autophagic cell death in Bax/Bak1 double-deleted mouse embryonic fibroblasts. Finally, increasing lysosomal permeability through a lysomotropic detergent in cells devoid of Bax/Bak1 restores autophagic cell death, collectively indicting that Bax/Bak integrate all major forms of cell death through direct effects on membrane permeability of multiple intracellular organelles.


Asunto(s)
Autofagia , Membrana Celular/metabolismo , Fibroblastos/fisiología , Lisosomas/metabolismo , Permeabilidad , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Ratones , Proteína Destructora del Antagonista Homólogo bcl-2/deficiencia , Proteína X Asociada a bcl-2/deficiencia
12.
J Clin Invest ; 127(10): 3770-3783, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28891814

RESUMEN

The master cytokine TGF-ß mediates tissue fibrosis associated with inflammation and tissue injury. TGF-ß induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-ß signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-ß-Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload-induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-ß receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload-induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-ß mutant transgene. Interestingly, cardiac fibroblast-specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-ß-Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.


Asunto(s)
Cardiopatías/metabolismo , Miocardio/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Fibrosis , Eliminación de Gen , Cardiopatías/genética , Cardiopatías/patología , Masculino , Ratones , Ratones Transgénicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibroblastos/patología , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética
13.
Nat Commun ; 8(1): 1875, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192139

RESUMEN

Regulation of mRNA splicing, processing and stability is increasingly recognized as a critical control point in dynamically altering gene expression during stress or disease. Very little is understood of this process in heart failure. Here, we show that BEX1 is a heart failure-induced gene functioning as an mRNA-associated protein that enhances expression of a subset of cardiac disease-promoting genes. Modeling the increase in BEX1 that occurs in disease, cardiac-specific BEX1 transgenic mice show worse cardiac disease with stress stimulation, whereas Bex1 gene-deleted mice are protected from heart failure-promoting insults. Proteomic and interactive screening assays show that BEX1 is part of a large ribonucleoprotein processing complex involved in regulating proinflammatory mRNA expression in the heart. Specifically, induction of BEX1 augments the stability and expression of AU-rich element containing mRNAs typically found within proinflammatory genes. Thus, BEX1 functions as an mRNA-dependent effector that augments pathology-promoting gene expression during heart failure.


Asunto(s)
Cardiomegalia/genética , Cardiomiopatías/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Proteínas del Tejido Nervioso/genética , ARN Mensajero/metabolismo , Animales , Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Estudios de Casos y Controles , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Mapeo de Interacción de Proteínas , Empalme del ARN , Ratas
14.
Sci Rep ; 7(1): 5328, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706255

RESUMEN

Transverse tubules (t-tubules) are uniquely-adapted membrane invaginations in cardiac myocytes that facilitate the synchronous release of Ca2+ from internal stores and subsequent myofilament contraction, although these structures become disorganized and rarefied in heart failure. We previously observed that mitsugumin 29 (Mg29), an important t-tubule organizing protein in skeletal muscle, was induced in the mouse heart for the first time during dilated cardiomyopathy with heart failure. Here we generated cardiac-specific transgenic mice expressing Mg29 to model this observed induction in the failing heart. Interestingly, expression of Mg29 in the hearts of Csrp3 null mice (encoding muscle LIM protein, MLP) partially restored t-tubule structure and preserved cardiac function as measured by invasive hemodynamics, without altering Ca2+ spark frequency. Conversely, gene-deleted mice lacking both Mg29 and MLP protein showed a further reduction in t-tubule organization and accelerated heart failure. Thus, induction of Mg29 in the failing heart is a compensatory response that directly counteracts the well-characterized loss of t-tubule complexity and reduced expression of anchoring proteins such as junctophilin-2 (Jph2) that normally occur in this disease. Moreover, preservation of t-tubule structure by Mg29 induction significantly increases the function of the failing heart.


Asunto(s)
Cardiomiopatía Dilatada/patología , Insuficiencia Cardíaca/patología , Proteínas Musculares/metabolismo , Sinaptofisina/metabolismo , Animales , Cardiomiopatía Dilatada/complicaciones , Modelos Animales de Enfermedad , Expresión Génica , Insuficiencia Cardíaca/complicaciones , Ratones Transgénicos , Proteínas Musculares/genética , Sinaptofisina/genética
15.
Mol Cell Biol ; 36(1): 2-12, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459760

RESUMEN

Thrombospondins are a family of stress-inducible secreted glycoproteins that underlie tissue remodeling. We recently reported that thrombospondin-4 (Thbs4) has a critical intracellular function, regulating the adaptive endoplasmic reticulum (ER) stress pathway through activating transcription factor 6α (Atf6α). In the present study, we dissected the domains of Thbs4 that mediate interactions with ER proteins, such as BiP (Grp78) and Atf6α, and the domains mediating activation of the ER stress response. Functionally, Thbs4 localized to the ER and post-ER vesicles and was actively secreted from cardiomyocytes, as were the type III repeat (T3R) and TSP-C domains, while the LamG domain localized to the Golgi apparatus. We also mutated the major calcium-binding motifs within the T3R domain of full-length Thbs4, causing ER retention and secretion blockade. The T3R and TSP-C domains as well as wild-type Thbs4 and the calcium-binding mutant interacted with Atf6α, induced an adaptive ER stress response, and caused expansion of intracellular vesicles. In contrast, overexpression of a related secreted oligomeric glycoprotein, Nell2, which lacks only the T3R and TSP-C domains, did not cause these effects. Finally, deletion of Atf6α abrogated Thbs4-induced vesicular expansion. Taken together, these data identify the critical intracellular functional domains of Thbs4, which was formerly thought to have only extracellular functions.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Trombospondinas/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Chaperón BiP del Retículo Endoplásmico , Glicoproteínas/genética , Proteínas de Choque Térmico , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Transporte de Proteínas/genética , Ratas , Transducción de Señal/genética , Trombospondinas/genética
16.
Elife ; 52016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27669143

RESUMEN

Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of ßPS integrin. This functional conservation emphasizes the fundamental importance of Thbs' as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy.


Asunto(s)
Expresión Génica , Membranas/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Trombospondinas/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila , Ratones , Distrofias Musculares/fisiopatología , Distrofias Musculares/prevención & control
17.
Nat Med ; 21(9): 1076-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26280121

RESUMEN

Tumor necrosis factor-α (TNF-α), one of the major stress-induced proinflammatory cytokines, is upregulated in the heart after tissue injury, and its sustained expression can contribute to the development of heart failure. Whether TNF-α also exerts cytoprotective effects in heart failure is not known. Here we provide evidence for a cardioprotective function of TNF-α in a genetic heart failure model, desmin-deficient mice. The cardioprotective effects of TNF-α are a consequence of nuclear factor-κB (NF-κB)-mediated ectopic expression in cardiomyocytes of keratin 8 (K8) and keratin 18 (K18), two epithelial-specific intermediate filament proteins. In cardiomyocytes, K8 and K18 (K8/K18) formed an alternative cytoskeletal network that localized mainly at intercalated discs (IDs) and conferred cardioprotection by maintaining normal ID structure and mitochondrial integrity and function. Ectopic induction of K8/K18 expression in cardiomyocytes also occurred in other genetic and experimental models of heart failure. Loss of the K8/K18 network resulted in a maladaptive cardiac phenotype following transverse aortic constriction. In human failing myocardium, where TNF-α expression is upregulated, K8/K18 were also ectopically expressed and localized primarily at IDs, which did not contain detectable amounts of desmin. Thus, TNF-α- and NF-κB-mediated formation of an alternative, stress-induced intermediate filament cytoskeleton has cardioprotective function in mice and potentially in humans.


Asunto(s)
Queratina-18/fisiología , Queratina-8/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Cardiomegalia/prevención & control , Desmina/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología
18.
PLoS One ; 10(6): e0129047, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26053850

RESUMEN

Proteolytic processing of amyloid-ß precursor protein (APP) by beta-site APP cleaving enzyme 1 (BACE1) is the initial step in the production of amyloid beta (Aß), which accumulates in senile plaques in Alzheimer's disease (AD). Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA) proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aß generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα), sAPPß, and Aß upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Encéfalo/metabolismo , Línea Celular , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Familia de Multigenes , Unión Proteica , Proteolisis , Eliminación de Secuencia
19.
Cardiovasc Res ; 91(4): 587-97, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21628326

RESUMEN

AIMS: The transcription factor FoxO3 contributes to anti-hypertrophic signalling in the heart presumably by regulating autophagic-lysosomal and ubiquitin-proteasomal pathways. We wanted to study FoxO3 function in the adult heart in vivo by expressing a constitutively active mutant of FoxO3 in transgenic mice. METHODS AND RESULTS: We generated transgenic mice in which a tetracycline-regulated constitutively active FoxO3 transgene (FoxO3-CA) is controlled by the heart-specific α-myosin heavy chain promoter. Cardiac-specific expression in adult mice resulted in a decrease in heart weight by 25% and a reduction in stroke volume and cardiac output. The decrease in heart size was due to a reduction in the size of individual cardiomyocytes, whereas there was no evidence for increased cell death. FoxO3 activation was accompanied by the initiation of a foetal gene programme with increased expression of ß-myosin heavy chain and natriuretic peptides, and by the activation of AKT and mammalian target of rapamycin signalling. As shown by electron microscopy, FoxO3-CA massively stimulated destruction of sarcomeres and autophagy, and induced expression of LC3-II and BNIP3. When FoxO3-CA expression was shut off in affected mice, cardiac atrophy and dysfunction as well as molecular markers were normalized within 1 month. FoxO3-CA expression did not counteract hypertrophy induced by transverse aortic constriction. CONCLUSION: Heart-specific expression of constitutively active FoxO3 leads to reversible heart atrophy. The reversibility of the phenotype suggests a remarkable ability of the adult myocardium to respond to different regulatory cues.


Asunto(s)
Autofagia , Factores de Transcripción Forkhead/fisiología , Miocardio/patología , Animales , Atrofia , Peso Corporal , Modelos Animales de Enfermedad , Proteína Forkhead Box O3 , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Tamaño de los Órganos , Fenotipo , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal , Serina-Treonina Quinasas TOR/fisiología , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA