Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(3): 688-701.e16, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32315618

RESUMEN

Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Activadores de Enzimas/metabolismo , Células HEK293 , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteína Fosfatasa 2/química , Subunidades de Proteína
2.
Nature ; 585(7825): 397-403, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32610343

RESUMEN

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteína Proteolipídica de la Mielina/deficiencia , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/terapia , Animales , Sistemas CRISPR-Cas , Femenino , Edición Génica , Hipoxia/metabolismo , Masculino , Ratones , Ratones Mutantes , Actividad Motora/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Mutación Puntual , Pruebas de Función Respiratoria , Análisis de Supervivencia
3.
Mol Cell Proteomics ; 21(9): 100280, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944844

RESUMEN

Mouse models of Alzheimer's disease (AD) show progression through stages reflective of human pathology. Proteomics identification of temporal and sex-linked factors driving AD-related pathways can be used to dissect initiating and propagating events of AD stages to develop biomarkers or design interventions. In the present study, we conducted label-free proteome measurements of mouse hippocampus tissue with variables of time (3, 6, and 9 months), genetic background (5XFAD versus WT), and sex (equal males and females). These time points are associated with well-defined phenotypes with respect to the following: Aß42 plaque deposition, memory deficits, and neuronal loss, allowing correlation of proteome-based molecular signatures with the mouse model stages. Our data show 5XFAD mice exhibit increases in known human AD biomarkers as amyloid-beta peptide, APOE, GFAP, and ITM2B are upregulated across all time points/stages. At the same time, 23 proteins are here newly associated with Alzheimer's pathology as they are also dysregulated in 5XFAD mice. At a pathways level, the 5XFAD-specific upregulated proteins are significantly enriched for DNA damage and stress-induced senescence at 3-month only, while at 6-month, the AD-specific proteome signature is altered and significantly enriched for membrane trafficking and vesicle-mediated transport protein annotations. By 9-month, AD-specific dysregulation is also characterized by significant neuroinflammation with innate immune system, platelet activation, and hyper-reactive astrocyte-related enrichments. Aside from these temporal changes, analysis of sex-linked differences in proteome signatures uncovered novel sex and AD-associated proteins. Pathway analysis revealed sex-linked differences in the 5XFAD model to be involved in the regulation of well-known human AD-related processes of amyloid fibril formation, wound healing, lysosome biogenesis, and DNA damage. Verification of the discovery results by Western blot and parallel reaction monitoring confirm the fundamental conclusions of the study and poise the 5XFAD model for further use as a molecular tool for understanding AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Amiloide , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteoma
4.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928221

RESUMEN

Methionine oxidation to the sulfoxide form (MSox) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MSox site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MSox across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states. Using this model, we analyzed age-, sex-, and disease-dependent MSox speciation in the mouse hippocampus. In addition, we explored the chemical stability and statistical variance of oxidized peptide signals to understand the needed power for MSox-based proteome studies. Our results identify mitochondrial and glycolytic pathway targets with increases in MSox with age as well as neuroinflammatory targets accumulating MSox with AD in proteome studies of the mouse hippocampus. Further, this paper establishes a foundation for reproducible and rigorous experimental MSox-omics appropriate for novel target identification in biological discovery and for biomarker analysis in ROS and other oxidation-linked diseases.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Glucólisis , Hipocampo , Metionina , Ratones Endogámicos C57BL , Mitocondrias , Proteómica , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Hipocampo/metabolismo , Ratones , Mitocondrias/metabolismo , Proteómica/métodos , Metionina/metabolismo , Metionina/análogos & derivados , Envejecimiento/metabolismo , Masculino , Femenino , Oxidación-Reducción , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad
5.
Clin Infect Dis ; 73(3): e765-e772, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564870

RESUMEN

BACKGROUND: Neurocognitive impairment (NCI) is associated with monocyte activation in people with HIV (PWH). Activated monocytes increase glycolysis, reduce oxidative phosphorylation, and accumulate citrate and succinate, tricarboxylic acid (TCA) cycle metabolites that promote inflammation-this metabolic shift may contribute to NCI and slowed gait speed in PWH. METHODS: Plasma citrate and succinate were assayed by liquid chromatography-mass spectrometry from 957 participants upon entry to a multicenter, prospective cohort of older PWH. Logistic, linear, and mixed-effects linear regression models were used to examine associations between entry/baseline TCA cycle metabolites and cross-sectional and longitudinal NCI, neuropsychological test scores (NPZ-4), and gait speed. RESULTS: Median age was 51 (range 40-78) years. Each 1 standard deviation (SD) citrate increment was associated with 1.18 higher odds of prevalent NCI at baseline (P = .03), 0.07 SD lower time-updated NPZ-4 score (P = .01), and 0.02 m/s slower time-updated gait speed (P < .0001). Age accentuated these effects. In the oldest age-quartile, higher citrate was associated with 1.64 higher odds of prevalent NCI, 0.17 SD lower NPZ-4, and 0.04 m/s slower gait speed (P ≤ .01 for each). Similar associations were apparent with succinate in the oldest age-quintile, but not with gait speed. In participants without NCI at entry, higher citrate predicted a faster rate of neurocognitive decline. CONCLUSIONS: Higher plasma citrate and succinate are associated with worse cross-sectional and longitudinal measures of neurocognitive function and gait speed that are age-dependent, supporting the importance of altered bioenergetic metabolism in the pathogenesis of NCI in older PWH.


Asunto(s)
Infecciones por VIH , Ácido Succínico , Adulto , Anciano , Ácido Cítrico , Estudios Transversales , Infecciones por VIH/complicaciones , Humanos , Persona de Mediana Edad , Estudios Prospectivos
6.
Nature ; 522(7555): 216-20, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25896324

RESUMEN

Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.


Asunto(s)
Clobetasol/farmacología , Miconazol/farmacología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Estratos Germinativos/patología , Humanos , Lisofosfatidilcolinas , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Fenotipo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores de Glucocorticoides/metabolismo , Regeneración/efectos de los fármacos , Técnicas de Cultivo de Tejidos
7.
PLoS Comput Biol ; 15(2): e1006678, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811403

RESUMEN

We present CoPhosK to predict kinase-substrate associations for phosphopeptide substrates detected by mass spectrometry (MS). The tool utilizes a Naïve Bayes framework with priors of known kinase-substrate associations (KSAs) to generate its predictions. Through the mining of MS data for the collective dynamic signatures of the kinases' substrates revealed by correlation analysis of phosphopeptide intensity data, the tool infers KSAs in the data for the considerable body of substrates lacking such annotations. We benchmarked the tool against existing approaches for predicting KSAs that rely on static information (e.g. sequences, structures and interactions) using publically available MS data, including breast, colon, and ovarian cancer models. The benchmarking reveals that co-phosphorylation analysis can significantly improve prediction performance when static information is available (about 35% of sites) while providing reliable predictions for the remainder, thus tripling the KSAs available from the experimental MS data providing to a comprehensive and reliable characterization of the landscape of kinase-substrate interactions well beyond current limitations.


Asunto(s)
Biología Computacional/métodos , Proteínas Quinasas/fisiología , Especificidad por Sustrato/fisiología , Teorema de Bayes , Sitios de Unión , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas , Fosforilación/fisiología , Fosfotransferasas/fisiología , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma , Análisis de Secuencia de Proteína , Programas Informáticos
8.
Retrovirology ; 15(1): 44, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970186

RESUMEN

BACKGROUND: Viral reprogramming of host cells enhances replication and is initiated by viral interaction with the cell surface. Upon human immunodeficiency virus (HIV) binding to CD4+ T cells, a signal transduction cascade is initiated that reorganizes the actin cytoskeleton, activates transcription factors, and alters mRNA splicing pathways. METHODS: We used a quantitative mass spectrometry-based phosphoproteomic approach to investigate signal transduction cascades initiated by CCR5-tropic HIV, which accounts for virtually all transmitted viruses and the vast majority of viruses worldwide. RESULTS: CCR5-HIV signaling induced significant reprogramming of the actin cytoskeleton and mRNA splicing pathways, as previously described. In addition, CCR5-HIV signaling induced profound changes to the mRNA transcription, processing, translation, and post-translational modifications pathways, indicating that virtually every stage of protein production is affected. Furthermore, we identified two kinases regulated by CCR5-HIV signaling-p70-S6K1 (RPS6KB1) and MK2 (MAPKAPK2)-that were also required for optimal HIV infection of CD4+ T cells. These kinases regulate protein translation and cytoskeletal architecture, respectively, reinforcing the importance of these pathways in viral replication. Additionally, we found that blockade of CCR5 signaling by maraviroc had relatively modest effects on CCR5-HIV signaling, in agreement with reports that signaling by CCR5 is dispensable for HIV infection but in contrast to the critical effects of CXCR4 on cortical actin reorganization. CONCLUSIONS: These results demonstrate that CCR5-tropic HIV induces significant reprogramming of host CD4+ T cell protein production pathways and identifies two novel kinases induced upon viral binding to the cell surface that are critical for HIV replication in host cells.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores CCR5/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Linfocitos T CD4-Positivos/inmunología , Citoesqueleto/metabolismo , Infecciones por VIH/inmunología , Interacciones Huésped-Patógeno , Humanos , Memoria Inmunológica , Fosfoproteínas/metabolismo , Proteómica/métodos , Receptores CXCR4/metabolismo , Tropismo Viral , Replicación Viral
9.
Proteomics ; 17(22)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28961369

RESUMEN

Activation of protein phosphatase 2A (PP2A) is a promising anticancer therapeutic strategy, as this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in the regulation of cellular growth and proliferation. In order to understand the systems-level perturbations mediated by PP2A activation, we carried out mass spectrometry-based phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer (NSCLC) cell lines (A549 and H358) treated with a novel small molecule activator of PP2A (SMAP). Overall, this permitted quantification of differential signaling across over 1600 phosphoproteins and 3000 phosphosites. Kinase activity assessment and pathway enrichment implicate collective downregulation of RAS and cell cycle kinases in the case of both cell lines upon PP2A activation. However, the effects on RAS-related signaling are attenuated for A549 compared to H358, while the effects on cell cycle-related kinases are noticeably more prominent in A549. Network-based analyses and validation experiments confirm these detailed differences in signaling. These studies reveal the power of phosphoproteomics studies, coupled to computational systems biology, to elucidate global patterns of phosphatase activation and understand the variations in response to PP2A activation across genetically similar NSCLC cell lines.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteómica/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Espectrometría de Masas , Fosforilación , Transducción de Señal
10.
Proteomics ; 17(13-14)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28544614

RESUMEN

Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models.


Asunto(s)
Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Narcolepsia/metabolismo , Proteoma/metabolismo , Animales , Ataxina-3/fisiología , Ratones , Ratones Noqueados , Orexinas/fisiología , Proteoma/análisis , Proteómica
11.
Retrovirology ; 14(1): 4, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28114951

RESUMEN

BACKGROUND: HIV-1 hijacks host cell machinery to ensure successful replication, including cytoskeletal components for intracellular trafficking, nucleoproteins for pre-integration complex import, and the ESCRT pathway for assembly and budding. It is widely appreciated that cellular post-translational modifications (PTMs) regulate protein activity within cells; however, little is known about how PTMs influence HIV replication. Previously, we reported that blocking deacetylation of tubulin using histone deacetylase inhibitors promoted the kinetics and efficiency of early post-entry viral events. To uncover additional PTMs that modulate entry and early post-entry stages in HIV infection, we employed a flow cytometric approach to assess a panel of small molecule inhibitors on viral fusion and LTR promoter-driven gene expression. RESULTS: While viral fusion was not significantly affected, early post-entry viral events were modulated by drugs targeting multiple processes including histone deacetylation, methylation, and bromodomain inhibition. Most notably, we observed that inhibitors of the Rho GTPase family of cytoskeletal regulators-including RhoA, Cdc42, and Rho-associated kinase signaling pathways-significantly reduced viral infection. Using phosphoproteomics and a biochemical GTPase activation assay, we found that virion-induced signaling via CD4 and CCR5 activated Rho family GTPases including Rac1 and Cdc42 and led to widespread modification of GTPase signaling-associated factors. CONCLUSIONS: Together, these data demonstrate that HIV signaling activates members of the Rho GTPase family of cytoskeletal regulators that are required for optimal HIV infection of primary CD4+ T cells.


Asunto(s)
Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/virología , VIH/fisiología , Receptores CCR5/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Integración Viral , Internalización del Virus
12.
Anal Chem ; 89(10): 5325-5332, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28467046

RESUMEN

During early infection, HIV-1 establishes a reservoir of latently infected cells that persist during antiretroviral therapy. These reservoirs are considered the primary obstacle to eradicating HIV-1 from patients, and multiple strategies are being investigated to eliminate latently infected cells. Measuring the reservoir size using an affordable and scalable assay is critical as these approaches move into clinical trials: the current "gold-standard" viral outgrowth assay is costly, labor-intensive, and requires large numbers of cells. Here, we assessed whether selective reaction monitoring-mass spectrometry (SRM-MS) is sufficiently sensitive to detect latent HIV reservoirs following reactivation of virus. The Gag structural proteins were the most abundant viral proteins in purified virus and infected cells, and tractable peptides for monitoring Gag levels were identified. We then optimized a Gag immunoprecipitation procedure that permitted sampling of more than 107 CD4+ T cells, a requirement for detecting exceedingly rare latently infected cells. Gag peptides were detectable in both cell lysates and supernatants in CD4+ T cells infected in vitro at frequencies as low as ∼1 in 106 cells and in cells from HIV-infected patients on suppressive antiretroviral therapy with undetectable viral loads. To our knowledge, this represents the first detection of reactivated latent HIV reservoirs from patients without signal amplification. Together, these results indicate that SRM-MS is a viable method for measuring latent HIV-1 reservoirs in patient samples with distinct advantages over current assays.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/metabolismo , Espectrometría de Masas en Tándem , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/análisis , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Monoclonales/inmunología , Linfocitos T CD4-Positivos/citología , Cromatografía Líquida de Alta Presión , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Inmunoprecipitación , Límite de Detección , Péptidos/análisis , Péptidos/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
13.
Am J Med Genet A ; 173(9): 2478-2484, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28691782

RESUMEN

Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Anomalías Múltiples , Adolescente , Discapacidades del Desarrollo/fisiopatología , Cara/fisiopatología , Duplicación de Gen/genética , Deformidades Congénitas de la Mano/fisiopatología , Haploinsuficiencia/genética , Humanos , Hibridación Fluorescente in Situ , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Proteómica
14.
Mol Cell Proteomics ; 14(3): 635-45, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573746

RESUMEN

Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Músculo Liso/metabolismo , Proteoma/análisis , Vejiga Urinaria/citología , Urotelio/metabolismo , Animales , Diabetes Mellitus Experimental/patología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Especificidad de Órganos , Proteómica/métodos , Transducción de Señal , Vejiga Urinaria/metabolismo
15.
Mol Cell Proteomics ; 14(1): 109-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25351201

RESUMEN

Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas/metabolismo , Psoriasis/metabolismo , Piel/metabolismo , Animales , Expresión Génica , Humanos , Queratinocitos/metabolismo , Ratones , Proteínas/genética , Proteómica , Psoriasis/genética , Reproducibilidad de los Resultados
16.
J Infect Dis ; 214(9): 1438-1448, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27540113

RESUMEN

BACKGROUND: Immune activation predicts morbidity during hepatitis C virus (HCV) infection and human immunodeficiency virus (HIV) infection, although mechanisms underlying immune activation are unclear. Plasma levels of autotaxin and its enzymatic product, lysophosphatidic acid (LPA), are elevated during HCV infection, and LPA activates immunocytes, but whether this contributes to immune activation is unknown. METHODS: We evaluated plasma levels of autotaxin, interleukin 6 (IL-6), soluble CD14 (sCD14), soluble CD163 (sCD163), and Mac2 binding protein (Mac2BP) during HCV infection, HIV infection, and HCV-HIV coinfection, as well as in uninfected controls, before and after HIV antiretroviral therapy (ART) initiation and during interferon-free HCV therapy. RESULTS: We observed greater plasma autotaxin levels in HCV-infected and HCV-HIV-coinfected participants, compared with uninfected participants, primarily those with a higher ratio of aspartate aminotransferase level to platelet count. Autotaxin levels correlated with IL-6, sCD14, sCD163, Mac2BP, and LPA levels in HCV-infected participants and with Mac2BP levels in HCV-HIV-coinfected participants, while in HIV-infected individuals, sCD14 levels correlated with Mac2BP levels. Autotaxin, LPA, and sCD14 levels normalized, while sCD163 and Mac2BP levels partially normalized within 6 months of starting interferon-free HCV therapy. sCD163 and IL-6 levels normalized within 6 months of starting ART for HIV infection. In vitro, LPA activated monocytes. CONCLUSIONS: These data indicate that elevated levels of autotaxin and soluble markers of immune activation during HCV infection are partially reversible within 6 months of initiating interferon-free HCV treatment and that autotaxin may be causally linked to immune activation during HCV infection and HCV-HIV coinfection.


Asunto(s)
Coinfección/inmunología , Infecciones por VIH/inmunología , VIH/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Hidrolasas Diéster Fosfóricas/sangre , Plasma/inmunología , Adulto , Anciano , Fármacos Anti-VIH/uso terapéutico , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Biomarcadores/sangre , Coinfección/tratamiento farmacológico , Coinfección/virología , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Interferones/uso terapéutico , Interleucina-6/inmunología , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lisofosfolípidos/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/virología , Receptores de Superficie Celular/inmunología
17.
Proteomics ; 15(22): 3797-805, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26389541

RESUMEN

Little is known about proteomic differences between pluripotent human peripheral blood monocytes (MN) and their terminally-differentiated pulmonary counterparts, alveolar macrophages (AM). To better characterize these cell populations, we performed a label-free shotgun proteomics assessment of matched AM and MN preparations from eight healthy volunteers. With an FDR of less than 0.45%, we identified 1754 proteins within AM and 1445 from MN. Comparison of the two proteomes revealed that 1239 of the proteins found in AM were shared with MN, whereas 206 proteins were uniquely identified in MN and 515 were unique to AM. Molecular and cellular functions, protein classes, development associations, and membership in physiological systems and canonical pathways were identified among the detected proteins. Analysis of biologic processes represented by these proteomes indicated that MN were most prominently enriched for proteins involved in cellular movement and immune cell trafficking. In contrast, AM were enriched for proteins involved in protein trafficking, molecular transport, and cellular assembly and organization. These findings provide a baseline proteomic resource for further studies aimed at better understanding of the functional differences between MN and AM in both health and disease.


Asunto(s)
Macrófagos Alveolares/química , Monocitos/química , Proteoma/análisis , Adulto , Biología Computacional , Humanos , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
18.
Mol Cell Proteomics ; 11(6): M111.015479, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22337588

RESUMEN

Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Modelos Biológicos , Neumonía/sangre , Proteínas de Fase Aguda/aislamiento & purificación , Proteínas de Fase Aguda/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Biomarcadores/sangre , Proteínas Sanguíneas/aislamiento & purificación , Electrocromatografía Capilar , Estudios de Casos y Controles , Progresión de la Enfermedad , Etanercept , Humanos , Inmunoglobulina G/uso terapéutico , Neumonía/tratamiento farmacológico , Neumonía/etiología , Neumonía/patología , Análisis de Componente Principal , Proteómica , Receptores del Factor de Necrosis Tumoral/uso terapéutico , Reproducibilidad de los Resultados , Trasplante Homólogo/efectos adversos
19.
PLoS One ; 19(2): e0295312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38300916

RESUMEN

Alveolar macrophages (AM) perform a primary defense mechanism in the lung through phagocytosis of inhaled particles and microorganisms. AM are known to be relatively immunosuppressive consistent with the aim to limit alveolar inflammation and maintain effective gas exchange in the face of these constant challenges. How AM respond to T cell derived cytokine signals, which are critical to the defense against inhaled pathogens, is less well understood. For example, successful containment of Mycobacterium tuberculosis (Mtb) in lung macrophages is highly dependent on IFN-γ secreted by Th-1 lymphocytes, however, the proteomic IFN-γ response profile in AM remains mostly unknown. In this study, we measured IFN-γ induced protein abundance changes in human AM and autologous blood monocytes (MN). AM cells were activated by IFN-γ stimulation resulting in STAT1 phosphorylation and production of MIG/CXCL9 chemokine. However, the global proteomic response to IFN-γ in AM was dramatically limited in comparison to that of MN (9 AM vs 89 MN differentially abundant proteins). AM hypo-responsiveness was not explained by reduced JAK-STAT1 signaling nor increased SOCS1 expression. These findings suggest that AM have a tightly regulated response to IFN-γ which may prevent excessive pulmonary inflammation but may also provide a niche for the initial survival and growth of Mtb and other intracellular pathogens in the lung.


Asunto(s)
Macrófagos Alveolares , Proteómica , Humanos , Citocinas/metabolismo , Perfilación de la Expresión Génica , Macrófagos Alveolares/metabolismo , Monocitos
20.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352401

RESUMEN

Metastasis remains a major cause of morbidity and mortality in men with prostate cancer, and the functional impact of the genetic alterations, alone or in combination, driving metastatic disease remains incompletely understood. The proto-oncogene c-MYC, commonly deregulated in prostate cancer. Transgenic expression of c-MYC is sufficient to drive the progression to prostatic intraepithelial neoplasia and ultimately to moderately differentiated localized primary tumors, however, c-MYC-driven tumors are unable to progress through the metastatic cascade, suggesting that a "second-hit" is necessary in the milieu of aberrant c-MYC-driven signaling. Here, we identified cooperativity between c-MYC and KLF6-SV1, an oncogenic splice variant of the KLF6 gene. Transgenic mice that co-expressed KLF6-SV1 and c-MYC developed progressive and metastatic prostate cancer with a histological and molecular phenotype like human prostate cancer. Silencing c-MYC expression significantly reduced tumor burden in these mice supporting the necessity for c-MYC in tumor maintenance. Unbiased global proteomic analysis of tumors from these mice revealed significantly enriched vimentin, a dedifferentiation and pro-metastatic marker, induced by KLF6-SV1. c-MYC-positive tumors were also significantly enriched for KLF6-SV1 in human prostate cancer specimens. Our findings provide evidence that KLF6-SV1 is an enhancer of c-MYC-driven prostate cancer progression and metastasis, and a correlated genetic event in human prostate cancer with potential translational significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA