Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phys Chem Chem Phys ; 23(34): 18308-18313, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34269785

RESUMEN

Understanding the mechanism responsible for the protein low-temperature crossover observed at T≈ 220 K can help us improve current cryopreservation technologies. This crossover is associated with changes in the dynamics of the system, such as in the mean-squared displacement, whereas experimental evidence of structural changes is sparse. Here we investigate hydrated lysozyme proteins by using a combination of wide-angle X-ray scattering and molecular dynamics (MD) simulations. Experimentally we suppress crystallization by accurate control of the protein hydration level, which allows access to temperatures down to T = 175 K. The experimental data indicate that the scattering intensity peak at Q = 1.54 Å-1, attributed to interatomic distances, exhibits temperature-dependent changes upon cooling. In the MD simulations it is possible to decompose the water and protein contributions and we observe that, while the protein component is nearly temperature independent, the hydration water peak shifts in a fashion similar to that of bulk water. The observed trends are analysed by using the water-water and water-protein radial distribution functions, which indicate changes in the local probability density of hydration water.


Asunto(s)
Frío , Simulación de Dinámica Molecular , Proteínas/química , Agua/química , Difracción de Rayos X , Conformación Proteica
2.
Phys Rev Lett ; 125(7): 076002, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857536

RESUMEN

We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of ∼0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.

3.
Phys Chem Chem Phys ; 22(14): 7625-7632, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32226993

RESUMEN

Studying the freezing of saltwater on a molecular level is of fundamental importance for improving freeze desalination techniques. In this study, we investigate the freezing process of NaCl solutions using a combination of X-ray diffraction and molecular dynamics simulations (MD) for different salt-water concentrations, ranging from seawater conditions to saturation. A linear superposition model reproduces well the brine rejection due to hexagonal ice Ih formation and allows us to quantify the fraction of ice and brine. Furthermore, upon cooling at T = 233 K, we observe the formation of NaCl·2H2O hydrates (hydrohalites), which coexist with ice Ih. MD simulations are utilized to model the formation of NaCl crystal hydrates. From the simulations, we estimate that the salinity of the newly produced ice is 0.5% mass percent (m/m) due to ion inclusions, which is within the salinity limits of fresh water. In addition, we show the effect of ions on the local ice structure using the tetrahedrality parameter and follow the crystallite formation using the ion coordination parameter and cluster analysis.

4.
J Phys Chem A ; 124(51): 10879-10889, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33319553

RESUMEN

Accommodation of vapor-phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various techniques report widely spread values of the water accommodation coefficient on ice, αice, and the results on its potential temperature dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice Ih using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter, and the distance below the instantaneous interface as criteria. Changes of the order parameter turn out to be a suitable measure to distinguish between the surface and bulk states of a molecule condensing onto the disordered interface. In light of the findings from the molecular dynamics, we discuss and re-analyze a recent experimental data set on αice obtained with an environmental molecular beam (EMB) setup [Kong, X.; J. Phys. Chem. A 2014, 118 (22), 3973-3979] using kinetic molecular flux modeling, aiming at a more comprehensive picture of the accommodation process from a molecular perspective. These results indicate that the experimental observations indeed cannot be explained by evaporation alone. At the same time, our results raise the issue of rapidly growing relaxation times upon decreasing temperature, challenging future experimental efforts to cover relevant time scales. Finally, we discuss the relevance of the water accommodation coefficient on ice in the context of atmospheric cloud particle growth processes.

5.
Proc Natl Acad Sci U S A ; 114(31): 8193-8198, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28652327

RESUMEN

Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

6.
J Chem Phys ; 151(3): 034508, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31325915

RESUMEN

Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∼30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water.

7.
Chem Rev ; 116(13): 7570-89, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27195477

RESUMEN

This review article focuses on the most recent advances in X-ray and neutron scattering studies of water structure, from ambient temperature to the deeply supercooled and amorphous states, and of water diffusive and collective dynamics, in disparate thermodynamic conditions and environments. In particular, the ability to measure X-ray and neutron diffraction of water with unprecedented high accuracy in an extended range of momentum transfers has allowed the derivation of detailed O-O pair correlation functions. A panorama of the diffusive dynamics of water in a wide range of temperatures (from 400 K down to supercooled water) and pressures (from ambient up to multiple gigapascals) is presented. The recent results obtained by quasi-elastic neutron scattering under high pressure are compared with the existing data from nuclear magnetic resonance, dielectric and infrared measurements, and modeling. A detailed description of the vibrational dynamics of water as measured by inelastic neutron scattering is presented. The dependence of the water vibrational density of states on temperature and pressure, and in the presence of biological molecules, is discussed. Results about the collective dynamics of water and its dispersion curves as measured by coherent inelastic neutron scattering and inelastic X-ray scattering in different thermodynamic conditions are reported.

8.
J Chem Phys ; 144(12): 124502, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27036456

RESUMEN

In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

9.
J Chem Phys ; 145(8): 084503, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586931

RESUMEN

We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

10.
J Chem Phys ; 142(4): 044505, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25637993

RESUMEN

The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

11.
Phys Rev Lett ; 113(15): 153002, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375708

RESUMEN

We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.


Asunto(s)
Modelos Teóricos , Espectrometría por Rayos X/métodos , Absorción Fisicoquímica , Rayos Láser , Rayos X
12.
J Chem Phys ; 140(24): 244506, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24985653

RESUMEN

X-ray absorption spectroscopy measured in transmission mode was used to study the effect of alkali and halide ions on the hydrogen-bonding (H-bonding) network of water. Cl(-) and Br(-) are shown to have insignificant effect on the structure of water while I(-) locally weakens the H-bonding, as indicated by a sharp increase of the main-edge feature in the x-ray absorption spectra. All alkali cations act as structure-breakers in water, weakening the H-bonding network. The spectral changes are similar to spectra of high density ices where the 2nd shell has collapsed due to a break-down of the tetrahedral structures, although here, around the ions, the breakdown of the local tetrahedrality is rather due to non-directional H-bonding to the larger anions. In addition, results from temperature-dependent x-ray Raman scattering measurements of NaCl solution confirm the H-bond breaking effect of Na(+) and the effect on the liquid as similar to an increase in temperature.


Asunto(s)
Cloruro de Sodio/química , Soluciones/química , Agua/química , Álcalis/química , Enlace de Hidrógeno , Iones , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
13.
J Chem Phys ; 138(7): 074506, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23445023

RESUMEN

Four recent x-ray diffraction measurements of ambient liquid water are reviewed here. Each of these measurements represents a significant development of the x-ray diffraction technique applied to the study of liquid water. Sources of uncertainty from statistical noise, Q-range, Compton scattering, and self-scattering are discussed. The oxygen-hydrogen contribution to the measured x-ray scattering pattern was subtracted using literature data to yield an experimental determination, with error bars, of the oxygen-oxygen pair-distribution function, g(OO)(r), which essentially describes the distribution of molecular centers. The extended Q-range and low statistical noise of these measurements has significantly reduced truncation effects and related errors in the g(OO)(r) functions obtained. From these measurements and error analysis, the position and height of the nearest neighbor maximum in g(OO)(r) were found to be 2.80(1) Å and 2.57(5) respectively. Numerical data for the coherent differential x-ray scattering cross-section I(X)(Q), the oxygen-oxygen structure factor S(OO)(Q), and the derived g(OO)(r) are provided as benchmarks for calibrating force-fields for water.

14.
Cannabis Cannabinoid Res ; 8(3): 414-425, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35442765

RESUMEN

Medical cannabis products contain dozens of active pharmaceutical ingredients (APIs) derived from the cannabis plant. However, their actual compositions and relative doses significantly change according to the production methods. Product compositions are strongly dependent on processing step conditions and on components' evaporation during those steps. Review of the documentation presented to caregivers and to patients show erroneous data or misinterpretation of data related to the evaporation, for example, cannabinoids' boiling points, as well as confusions between terms, such as boiling, vaporization, and evaporation. Clarifying these aspects is essential for caregivers, for researchers, and for developers of manufacturing processes. Original and literature data were analyzed, comparing composition changes during various processing steps and correlating the extent of change to components' vapor pressures at the corresponding temperature. Evaporation-related composition changes start at temperatures as low as those of drying and curing and become extensive during decarboxylation. The relative rate of components' evaporation is determined by their relative vapor pressure and monoterpenes are lost first. On vaping, terpenes are inhaled before cannabinoids do. Commercial medical cannabis products are deficient in terpenes, mainly monoterpenes, compared with the cannabis plants used to produce them. Terms, such as "whole plant" and "full spectrum," are misleading since no product actually reflects the original cannabis plant composition. There are important implications for medical cannabis manufacturing and for the ability to make the most out of the terpene API contribution. Medical cannabis products' composition and product delivery are controlled by the relative vapor pressure of the various APIs. Quantitative data provided in this study can be used for improvement to reach better accuracy, reproducibility, and preferred medical cannabis compositions.


Asunto(s)
Cannabinoides , Cannabis , Marihuana Medicinal , Vapeo , Humanos , Marihuana Medicinal/uso terapéutico , Presión de Vapor , Preparaciones Farmacéuticas , Reproducibilidad de los Resultados , Terpenos , Monoterpenos
15.
Artículo en Inglés | MEDLINE | ID: mdl-37847234

RESUMEN

Background: The efficacy of cannabis treatment is determined by the active pharmaceutical ingredients (APIs) of the ingested composition. Despite smoking predominancy in cannabis treatment, very little is known regarding its yield and provision rate of cannabis APIs. Material and Methods: Ten experiments were performed, studying changes in APIs content during smoking, using a designated smoking machine. APIs content was evaluated via analysis of a cigarette's residuals and of the smoke composition; cannabinoid and terpene content were assessed. Results: Results demonstrated increased cannabinoid content in the cigarette sections closer to the mouth, as compared with those closer to the lit end. Similarly, cannabinoid content in the inhaled smoke increases as smoking progresses. Similar results are found for sesquiterpenes. Monoterpenes, having lower boiling points reach the smoke before the sesquiterpenes and cannabinoids do. Conclusion: A mechanism is proposed, including: (i) decarboxylation and evaporation of APIs adjacent to the lit end, (ii) transition of API vapors away from the hot zone, (iii) condensation of APIs in cigarette's sections closer to the mouth, and (iv) re-evaporation of APIs as the hot zone approaches, thereby reaching the smoke. Differences in the boiling points between the various APIs result in varying composition along the cigarette and in the inhaled smoke. The main implications are: (i) APIs delivery through smoking cannot be uniform, (ii) APIs amount per puff increases as smoking progresses, and (iii) terpenes are inhaled before the cannabinoids are. Thus, in addition to its known health-threatening hazards, smoking entails nonuniform provision of APIs, even within the same cigarette.

16.
J Chem Phys ; 136(7): 074507, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22360248

RESUMEN

We report small angle x-ray scattering data demonstrating the direct experimental microscopic observation of the small-to-large crossover behavior of hydrophobic effects in hydrophobic solvation. By increasing the side chain length of amphiphilic tetraalkyl-ammonium (C(n)H(2n+1))(4)N(+) (R(4)N(+)) cations in aqueous solution we observe diffraction peaks indicating association between cations at a solute size between 4.4 and 5 Å, which show temperature dependence dominated by hydrophobic attraction. Using O K-edge x-ray absorption we show that small solutes affect hydrogen bonding in water similar to a temperature decrease, while large solutes affect water similar to a temperature increase. Molecular dynamics simulations support, and provide further insight into, the origin of the experimental observations.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Solventes/química , Simulación de Dinámica Molecular , Compuestos de Amonio Cuaternario/química , Dispersión del Ángulo Pequeño , Solubilidad , Temperatura , Difracción de Rayos X
17.
Sci Adv ; 8(46): eabq0793, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383670

RESUMEN

The formation of sea ice in polar regions is possible because a salinity gradient or halocline keeps the water column stable despite intense cooling. Here, we demonstrate that a unique water property is central to the maintenance of the polar halocline, namely, that the thermal expansion coefficient (TEC) of seawater increases by one order of magnitude between polar and tropical regions. Using a fully coupled climate model, it is shown that, even with excess precipitations, sea ice would not form at all if the near-freezing temperature TEC was not well below its ocean average value. The leading order dependence of the TEC on temperature is essential to the coexistence of the mid/low-latitude thermally stratified and the high-latitude sea ice-covered oceans that characterize our planet. A key implication is that nonlinearities of water properties have a first-order impact on the global climate of Earth and possibly exoplanets.

18.
Can Vet J ; 52(1): 50-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21461207

RESUMEN

Feeding of raw meat-based diets to pets has become an increasingly popular trend amongst pet owners. Owners, who desire to provide the best for their pets, seek veterinary opinions about food options. This paper reviews and applies standards of evidence-based medicine to grade the available scientific literature that addresses the nutritional benefits or risks, infectious disease risks, and public health implications of raw, meat-based pet diets. Although there is a lack of large cohort studies to evaluate risk or benefit of raw meat diets fed to pets, there is enough evidence to compel veterinarians to discuss human health implications of these diets with owners.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Gatos/fisiología , Perros/fisiología , Salud Pública , Alimentación Animal/análisis , Alimentación Animal/normas , Animales , Medicina Basada en la Evidencia , Necesidades Nutricionales , Valor Nutritivo , Factores de Riesgo , Zoonosis
19.
Can Vet J ; 51(9): 1000-2, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21119867

RESUMEN

The urine test strip is the most common test used to detect ketones in veterinary patients, but it can underestimate the degree of ketonuria and hence, ketonemia. Additionally, adequate urine samples for analysis may be difficult to obtain from dehydrated animals. The standard method used to detect and monitor ketonemia in human medicine is measurement of serum or whole blood beta-hydroxybutyrate (ßHOB). A point-of-care (POC) analyzer has been validated for this purpose in humans. This study compared the accuracy of the POC device to an enzymatic reaction laboratory method for measurement of ßHOB in dogs. Although the POC sensor tended to overestimate ßHOB concentrations, there was good correlation (R(2) = 0.96) and good agreement between the 2 methods with a bias +/- precision of 0.0860 +/- 0.3410 mmol/L ßHOB. The POC ßHOB sensor can be useful for assessing ketonemia in dogs.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Enfermedades de los Perros/diagnóstico , Cetosis/veterinaria , Sistemas de Atención de Punto/estadística & datos numéricos , Animales , Enfermedades de los Perros/sangre , Perros , Cetosis/sangre , Cetosis/diagnóstico , Sistemas de Atención de Punto/normas , Sensibilidad y Especificidad
20.
Plant Sci ; 283: 301-310, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128700

RESUMEN

Mandrakes (Mandragora spp., Solanaceae) are known to contain tropane alkaloids and have been used since antiquity in traditional medicine. Tropane alkaloids such as scopolamine and hyoscyamine are used in modern medicine to treat pain, motion sickness, as eye pupil dilators and antidotes against organo-phosphate poisoning. Hyoscyamine is converted to 6ß-hydroxyhyoscyamine (anisodamine) and scopolamine by hyoscyamine 6ß-hydroxylase (H6H), a 2-oxoglutarate dependent dioxygenase. We describe here a marked chemo-diversity in the tropane alkaloid content in Mandragora spp. M. officinarum and M. turcomanica lack anisodamine and scopolamine but display up to 10 fold higher hyoscyamine levels as compared with M. autumnalis. Transcriptomic analyses revealed that H6H is highly conserved among scopolamine-producing Solanaceae. MoH6H present in M. officinarum differs in several amino acid residues including a homozygotic mutation in the substrate binding region of the protein and its prevalence among accessions was confirmed by Cleaved-Amplified-Polymorphic-Sequence analyses. Functional expression revealed that MaH6H, a gene isolated from M. autumnalis encodes an active H6H enzyme while the MoH6H sequence isolated from M. officinarum was functionally inactive. A single G to T mutation in nucleotide 663 of MoH6H is associated with the lack of anisodamine and scopolamine in M. officinalis.


Asunto(s)
Alcaloides/metabolismo , Mandragora/metabolismo , Oxigenasas de Función Mixta/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Mandragora/genética , Oxigenasas de Función Mixta/genética , Escopolamina/metabolismo , Análisis de Secuencia de ADN , Alcaloides Solanáceos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA