Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682248

RESUMEN

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Asunto(s)
Estrés del Retículo Endoplásmico , Transducción de Señal , Trombospondinas/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Trombospondinas/genética
2.
Am J Pathol ; 172(6): 1704-16, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18467699

RESUMEN

The immature brains of newborns often respond differently from the brains of adults when exposed to similar insults. Previous studies have indicated that although hypoxia-ischemia (HI) induces persistent thrombosis in adult brains, it only modestly impairs blood perfusion in newborn brains. Here, we used the Vannucci model of HI encephalopathy to study age-related responses to cerebral HI in rat pups. We found that HI triggered fibrin deposition and impaired blood perfusion in both neonatal and adult brains. However, these effects were only transient in neonatal brains (<4 hours) and were accompanied by acute induction of both tissue-type and urinary-type plasminogen activators (tPA and uPA), which was not observed in adult brains subjected to the same insult. Interestingly, activation of the plasminogen system persisted up to 24 hours in neonatal brains, long after the clearance of fibrin-rich thrombi. Furthermore, astrocytes and macrophages outside blood vessels expressed tPA after HI, suggesting the possibility of tPA/plasmin-mediated cytotoxicity. Consistent with this hypothesis, injection of alpha2-antiplasmin into cerebral ventricles markedly ameliorated HI-induced damage to neurofilaments and white matter oligodendrocytes, providing a dose-response reduction of brain injury after 7 days of recovery. Conversely, ventricular injection of tPA increased HI-induced brain damage. Together, these results suggest that tPA/plasmin induction, which may contribute to acute fibrinolysis, is a critical component of extravascular proteolytic damage in immature brains, representing a new therapeutic target for the treatment of HI encephalopathy.


Asunto(s)
Encéfalo/irrigación sanguínea , Hipoxia-Isquemia Encefálica/patología , Activador de Tejido Plasminógeno/fisiología , Activador de Plasminógeno de Tipo Uroquinasa/fisiología , Animales , Animales Recién Nacidos , Astrocitos/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Fibrina/metabolismo , Fibrinolisina/fisiología , Fibrinólisis , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/fisiopatología , Inyecciones Intraventriculares , Macrófagos/patología , Oligodendroglía/patología , Ratas , Ratas Wistar , Activador de Tejido Plasminógeno/farmacología , alfa 2-Antiplasmina/farmacología
3.
J Neurosci ; 24(47): 10763-72, 2004 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-15564594

RESUMEN

Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.


Asunto(s)
Apoptosis/fisiología , Encéfalo/fisiopatología , ADN/biosíntesis , Hipoxia-Isquemia Encefálica/fisiopatología , Neuronas/fisiología , Fase S/fisiología , Adrenalectomía , Factores de Edad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/fisiopatología , Bromodesoxiuridina , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Etiquetado Corte-Fin in Situ , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley
4.
Autophagy ; 3(1): 42-4, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17035724

RESUMEN

Recent studies indicate the existence of autophagy in cerebral ischemia, but the functions of autophagy in this setting remain unclear. Here we discuss the role of autophagy in cerebral ischemia based on our own publication and the literature on this subject. We propose that oxidative and endoplasmic reticulum (ER) stresses n cerebral ischemia-hypoxia are potent stimuli of autophagy in neurons. We also reviewed evidence suggesting autophagosomes may have a shorter half-life in neurons and that a fraction of LC3 protein is degraded within autolysosomes, leading to a smaller detectable amount of LC3-II in the brain while there are clear indications of on-going autophagy. Finally, we suggest autophagy is an important modifier of cell death and survival, interacting with necrosis and apoptosis in determining the outcomes and final morphology of deceased neurons.


Asunto(s)
Autofagia/fisiología , Isquemia Encefálica/patología , Animales , Humanos , Hipoxia Encefálica/patología , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Desnaturalización Proteica
5.
Proc Natl Acad Sci U S A ; 103(44): 16313-8, 2006 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17060633

RESUMEN

Jun NH(2)-terminal kinases (JNKs) regulate convergent extension movements in Xenopus embryos through the noncanonical Wnt/planar cell polarity pathway. In addition, there is a high level of maternal JNK activity spanning from oocyte maturation until the onset of gastrulation that has no defined functions. Here, we show that maternal JNK activation requires Dishevelled and JNK is enriched in the nucleus of Xenopus embryos. Although JNK activity is not required for the glycogen synthase kinase-3-mediated degradation of beta-catenin, inhibition of the maternal JNK signaling by morpholino-antisense oligos causes hyperdorsalization of Xenopus embryos and ectopic expression of the Wnt/beta-catenin target genes. These effects are associated with an increased level of nuclear and nonmembrane-bound beta-catenin. Moreover, ventral injection of the constitutive-active Jnk mRNA blocks beta-catenin-induced axis duplication, and dorsal injection of active Jnk mRNA into Xenopus embryos decreases the dorsal marker gene expression. In mammalian cells, activation of JNK signaling reduces Wnt3A-induced and beta-catenin-mediated gene expression. Furthermore, activation of JNK signaling rapidly induces the nuclear export of beta-catenin. Taken together, these results suggest that JNK antagonizes the canonical Wnt pathway by regulating the nucleocytoplasmic transport of beta-catenin rather than its cytoplasmic stability. Thus, the high level of sustained maternal JNK activity in early Xenopus embryos may provide a timing mechanism for controlling the dorsal axis formation.


Asunto(s)
Vértebra Cervical Axis/metabolismo , Núcleo Celular/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Xenopus/embriología , Xenopus/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Vértebra Cervical Axis/embriología , Línea Celular , Proteínas Dishevelled , Embrión no Mamífero/embriología , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Madres , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas , Transcripción Genética/genética , Proteínas Wnt/metabolismo
6.
Am J Pathol ; 169(2): 566-83, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16877357

RESUMEN

Hypoxia is a critical factor for cell death or survival in ischemic stroke, but the pathological consequences of combined ischemia-hypoxia are not fully understood. Here we examine this issue using a modified Levine/Vannucci procedure in adult mice that consists of unilateral common carotid artery occlusion and hypoxia with tightly regulated body temperature. At the cellular level, ischemia-hypoxia produced proinflammatory cytokines and simultaneously activated both prosurvival (eg, synthesis of heat shock 70 protein, phosphorylation of ERK and AKT) and proapoptosis signaling pathways (eg, release of cytochrome c and AIF from mitochondria, cleavage of caspase-9 and -8). However, caspase-3 was not activated, and very few cells completed the apoptosis process. Instead, many damaged neurons showed features of autophagic/lysosomal cell death. At the tissue level, ischemia-hypoxia caused persistent cerebral perfusion deficits even after release of the carotid artery occlusion. These changes were associated with both platelet deposition and fibrin accumulation within the cerebral circulation and would be expected to contribute to infarction. Complementary studies in fibrinogen-deficient mice revealed that the absence of fibrin and/or secondary fibrin-mediated inflammatory processes significantly attenuated brain damage. Together, these results suggest that ischemia-hypoxia is a powerful stimulus for spontaneous coagulation leading to reperfusion deficits and autophagic/lysosomal cell death in brain.


Asunto(s)
Autofagia , Coagulación Intravascular Diseminada/fisiopatología , Hipoxia-Isquemia Encefálica/inducido químicamente , Animales , Apoptosis , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/patología , Encéfalo/ultraestructura , Edema Encefálico/patología , Infarto Encefálico/patología , Supervivencia Celular , Citocinas/biosíntesis , Fibrina/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Flujo Sanguíneo Regional , Reperfusión , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 100(25): 15184-9, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14657393

RESUMEN

c-Jun N-terminal kinase (JNK) signaling is an important contributor to stress-induced apoptosis, but it is unclear whether JNK and its isoforms (JNK1, JNK2, and JNK3) have distinct roles in cerebral ischemia. Here we show that JNK1 is the major isoform responsible for the high level of basal JNK activity in the brain. In contrast, targeted deletion of Jnk3 not only reduces the stress-induced JNK activity, but also protects mice from brain injury after cerebral ischemia-hypoxia. The downstream mechanism of JNK3-mediated apoptosis may include the induction of Bim and Fas and the mitochondrial release of cytochrome c. These results suggest that JNK3 is a potential target for neuroprotection therapies in stroke.


Asunto(s)
Apoptosis , Isquemia , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas Tirosina Quinasas/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Citocromos c/metabolismo , Activación Enzimática , Glucosa/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Mitocondrias/metabolismo , Proteína Quinasa 10 Activada por Mitógenos , Miocardio/citología , Neuronas/metabolismo , Oxígeno/metabolismo , Isoformas de Proteínas , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA