Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancers (Basel) ; 15(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37297008

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous herpes virus associated with various cancers. EBV establishes latency with life-long persistence in memory B-cells and can reactivate lytic infection placing immunocompromised individuals at risk for EBV-driven lymphoproliferative disorders (EBV-LPD). Despite the ubiquity of EBV, only a small percentage of immunocompromised patients (~20%) develop EBV-LPD. Engraftment of immunodeficient mice with peripheral blood mononuclear cells (PBMCs) from healthy EBV-seropositive donors leads to spontaneous, malignant, human B-cell EBV-LPD. Only about 20% of EBV+ donors induce EBV-LPD in 100% of engrafted mice (High-Incidence, HI), while another 20% of donors never generate EBV-LPD (No-Incidence, NI). Here, we report HI donors to have significantly higher basal T follicular helper (Tfh) and regulatory T-cells (Treg), and depletion of these subsets prevents/delays EBV-LPD. Transcriptomic analysis of CD4+ T cells from ex vivo HI donor PBMC revealed amplified cytokine and inflammatory gene signatures. HI vs. NI donors showed a marked reduction in IFNγ production to EBV latent and lytic antigen stimulation. In addition, we observed abundant myeloid-derived suppressor cells in HI donor PBMC that decreased CTL proliferation in co-cultures with autologous EBV+ lymphoblasts. Our findings identify potential biomarkers that may identify individuals at risk for EBV-LPD and suggest possible strategies for prevention.

2.
Vaccines (Basel) ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073261

RESUMEN

Epstein-Barr virus (EBV) is a human herpes virus that infects over 90% of the world's population and is linked to development of cancer. In immune-competent individuals, EBV infection is mitigated by a highly efficient virus-specific memory T-cell response. Risk of EBV-driven cancers increases with immune suppression (IS). EBV-seronegative recipients of solid organ transplants are at high risk of developing post-transplant lymphoproliferative disease (PTLD) due to iatrogenic IS. While reducing the level of IS may improve EBV-specific immunity and regression of PTLD, patients are at high risk for allograft rejection and need for immune-chemotherapy. Strategies to prevent PTLD in this vulnerable patient population represents an unmet need. We have previously shown that BZLF1-specific cytotoxic T-cell (CTL) expansion following reduced IS correlated with immune-mediated PTLD regression and improved patient survival. We have developed a vaccine to bolster EBV-specific immunity to the BZLF1 protein and show that co-culture of dendritic cells (DCs) loaded with a αDEC205-BZLF1 fusion protein with peripheral blood mononuclear cells (PMBCs) leads to expansion and increased cytotoxic activity of central-effector memory CTLs against EBV-transformed B-cells. Human-murine chimeric Hu-PBL-SCID mice were vaccinated with DCs loaded with αDEC205-BZLF1 or control to assess prevention of fatal human EBV lymphoproliferative disease. Despite a profoundly immunosuppressive environment, vaccination with αDEC205-BZLF1 stimulated clonal expansion of antigen-specific T-cells that produced abundant IFNγ and significantly prolonged survival. These results support preclinical and clinical development of vaccine approaches using BZLF1 as an immunogen to harness adaptive cellular responses and prevent PTLD in vulnerable patient populations.

3.
PLoS One ; 16(5): e0250839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989303

RESUMEN

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of blood cancers arising in lymphoid tissues that commonly effects both humans and dogs. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the symmetric di-methylation of arginine residues, is frequently overexpressed and dysregulated in both human solid and hematologic malignancies. In human lymphoma, PRMT5 is a known driver of malignant transformation and oncogenesis, however, the expression and role of PRMT5 in canine lymphoma has not been explored. To explore canine lymphoma as a useful comparison to human lymphoma while validating PRMT5 as a rational therapeutic target in both, we characterized expression patterns of PRMT5 in canine lymphoma tissue microarrays, primary lymphoid biopsies, and canine lymphoma-derived cell lines. The inhibition of PRMT5 led to growth suppression and induction of apoptosis, while selectively decreasing global marks of symmetric dimethylarginine (SDMA) and histone H4 arginine 3 symmetric dimethylation. We performed ATAC-sequencing and gene expression microarrays with pathway enrichment analysis to characterize genome-wide changes in chromatin accessibility and whole-transcriptome changes in canine lymphoma cells lines upon PRMT5 inhibition. This work validates PRMT5 as a promising therapeutic target for canine lymphoma and supports the continued use of the spontaneously occurring canine lymphoma model for the preclinical development of PRMT5 inhibitors for the treatment of human NHL.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Linfoma no Hodgkin/patología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perros , Humanos , Linfoma no Hodgkin/genética , Metilación , Proteína-Arginina N-Metiltransferasas/genética
4.
Front Immunol ; 12: 700045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539628

RESUMEN

We report a first in-depth comparison of immune reconstitution in patients with HIV-related lymphoma following autologous hematopoietic cell transplant (AHCT) recipients (n=37, lymphoma, BEAM conditioning), HIV(-) AHCT recipients (n=30, myeloma, melphalan conditioning) at 56, 180, and 365 days post-AHCT, and 71 healthy control subjects. Principal component analysis showed that immune cell composition in HIV(+) and HIV(-) AHCT recipients clustered away from healthy controls and from each other at each time point, but approached healthy controls over time. Unsupervised feature importance score analysis identified activated T cells, cytotoxic memory and effector T cells [higher in HIV(+)], and naïve and memory T helper cells [lower HIV(+)] as a having a significant impact on differences between HIV(+) AHCT recipient and healthy control lymphocyte composition (p<0.0033). HIV(+) AHCT recipients also demonstrated lower median absolute numbers of activated B cells and lower NK cell sub-populations, compared to healthy controls (p<0.0033) and HIV(-) AHCT recipients (p<0.006). HIV(+) patient T cells showed robust IFNγ production in response to HIV and EBV recall antigens. Overall, HIV(+) AHCT recipients, but not HIV(-) AHCT recipients, exhibited reconstitution of pro-inflammatory immune profiling that was consistent with that seen in patients with chronic HIV infection treated with antiretroviral regimens. Our results further support the use of AHCT in HIV(+) individuals with relapsed/refractory lymphoma.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Trasplante de Células Madre Hematopoyéticas , Reconstitución Inmune/inmunología , Linfoma Relacionado con SIDA/terapia , Ensayos Clínicos Fase II como Asunto , Humanos , Trasplante Autólogo/métodos
5.
Mol Cancer Ther ; 15(5): 830-41, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26809490

RESUMEN

Multiple myeloma remains incurable and the majority of patients die within 5 years of diagnosis. Reolysin, the infusible form of human reovirus (RV), is a novel viral oncolytic therapy associated with antitumor activity likely resulting from direct oncolysis and a virus-mediated antitumor immune response. Results from our phase I clinical trial investigating single agent Reolysin in patients with relapsed multiple myeloma confirmed tolerability, but no objective responses were evident, likely because the virus selectively entered the multiple myeloma cells but did not actively replicate. To date, the precise mechanisms underlying the RV infectious life cycle and its ability to induce oncolysis in patients with multiple myeloma remain unknown. Here, we report that junctional adhesion molecule 1 (JAM-1), the cellular receptor for RV, is epigenetically regulated in multiple myeloma cells. Treatment of multiple myeloma cells with clinically relevant histone deacetylase inhibitors (HDACi) results in increased JAM-1 expression as well as increased histone acetylation and RNA polymerase II recruitment to its promoter. Furthermore, our data indicate that the combination of Reolysin with HDACi, potentiates RV killing activity of multiple myeloma cells in vitro and in vivo This study provides the molecular basis to use these agents as therapeutic tools to increase the efficacy of RV therapy in multiple myeloma. Mol Cancer Ther; 15(5); 830-41. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Vectores Genéticos , Inhibidores de Histona Desacetilasas/farmacología , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Epigénesis Genética , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Virus Oncolíticos/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA